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Abstract
Programming language and operating system support for efficient
concurrency-safe access to shared data is a key concern for the
effective use of multi-core processors. Most research has focused
on the software model of multiple threads accessing this data within
a single shared address space. However, many real applications are
actually structured as multiple separate processes for fault isolation
and simplified synchronization.

In this paper, we describe the HICAMP architecture and its
innovative memory system, which supports efficient concurrency
safe access to structured shared data without incurring the overhead
of inter-process communication. The HICAMP architecture also
provides support for programming language and OS structures
such as threads, iterators, read-only access and atomic update. In
addition to demonstrating that HICAMP is beneficial for multi-
process structured applications, our evaluation shows that the same
mechanisms provide substantial benefits for other areas, including
sparse matrix computations and virtualization.

Categories and Subject Descriptors B.3.2 [Hardware]: Mem-
ory Structures—associative memories, cache memories; C.1.2
[Processor Architectures]: Multiple Data Stream Architectures
(Multiprocessors)—parallel processors

General Terms Design, Performance, Reliability

Keywords Parallel Programming, Parallel Architecture, Mem-
ory Model, Snapshot Semantics, Memory Sharing, Fault Isolation,
Memory Deduplication, Iterator Register

1. Introduction
Programming language and operating system support for efficient
concurrency-safe access to shared data is a key issue to address to
achieve the effective use of multi-core processors. Most of the focus
in this area has been on the multithreaded model, where multiple
threads within a single address space concurrently access shared
data in memory. However, this model introduces non-deterministic
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execution because of arbitrary interleaving of threads accessing
shared memory [25]. The programmer thus needs to carefully or-
chestrate access to shared data using mechanisms such as locks,
monitors or transactions to prevent corruption of shared state. Var-
ious programming language constructs and checking tools have
been developed to reduce the associated problems. However, soft-
ware bugs can still cause the entire application or system to fail and
these bugs are hard to reproduce and thus difficult to track down.

A common approach is to partition the application system into
multiple separate client processes and one or more shared state-
managing processes, connected by an inter-process communication
(IPC) mechanism such as sockets. For example, a web site is
usually implemented as multiple web server processes accessing
shared state stored in a database server, running as a separate
process. To provide sufficient read bandwidth, many high traffic
websites extend this model further by instantiating one or more
memcached [15] processes that serve as a fast cache of common
database queries, i.e., the common parts of dynamically generated
web-pages1. A similar structure is found in many other web and
database applications as well as embedded systems [5].

This multi-process structure provides strong fault isolation be-
tween the client processes and the servers, preventing the clients
from corrupting the shared state and allowing restart of a failed
client. This structure also allows client application code to be se-
quential, delegating concurrency control to these database/mem-
cached servers, reducing the cost of development and improving
the reliability of this software. It also allows the application to scale
seamlessly across a cluster of networked processors, beyond the
limits of a single physical server.

The disadvantage of this approach is the overhead: a client pro-
cess needs to generate a message from its internal state, transmit the
message over the socket to the server process, wait for the server’s
reply, extract information from server message and transform it
back to the internal representation. Similar overhead is incurred on
the server side as well as overheads for concurrency control, log-
ging and buffer management. In fact, Stonebraker and Catte [28]
estimate that only 13 percent of CPU cycles perform the actual
work of a database when it is running completely in memory. As
the number of cores on a chip increases, it becomes possible to
run many processes on the same chip, yet these overheads, be-
ing memory-intensive, can be expected to become proportionally
worse.

The HICAMP (Hierarchical Immutable Content Address-
able Memory Processor) architecture provides an alternative to
both shared memory and “database” models by implementing, in
hardware, a memory abstraction of protected sharable segments

1 memcached is widely used by many popular high-traffic web-sites (Face-
book [27], YouTube, Wikipedia, LiveJournal, etc.).
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that can be “snapshotted” and atomically updated efficiently. This
abstraction allows efficient, fault-tolerant, concurrency-safe access
to shared data by multiple threads without the loss of hardware-
enforced isolation, yet without the conventional overheads of an
application structured as multiple processes. HICAMP also incor-
porates memory deduplication, which further reduces copy over-
head and improves cache and DRAM utilization.

In this paper, we describe the HICAMP architecture: how it
supports key programming language constructs, including shared
objects, iterators and atomic updates, how it simplifies operating
systems for multi-core processors, and how it is amenable to a
cost-effective implementation. We further describe how this novel
memory architecture provides substantial benefits to other applica-
tion domains, providing significant improvements in memory per-
formance of applications ranging from web software to sparse ma-
trix computations and virtual machine hosting. The latter allows
HICAMP to run legacy software.

2. HICAMP Architecture
The HICAMP memory architecture introduces three key concepts:

1. Content-unique lines: memory is considered to be an array of
small, fixed-size lines, where each line is addressed by a Phys-
ical Line ID (PLID), and has unique content that is immutable
over its lifetime.

2. Memory segments: memory is accessed as a number of seg-
ments, where each segment is structured as a Directed Acyclic
Graph (DAG) of memory lines, i.e. logically a tree but with po-
tentially shared lines due to the content-uniqueness property of
lines.

3. Virtual segment map: a mapping from Virtual Segment IDs
(VSID) that identify memory segments for applications, to the
root PLID of the DAG representing the segment contents.

The following subsections elaborate on these concepts.

2.1 Content-Unique Lines
The HICAMP main (DRAM) memory is divided into lines, each
with a fixed size, such as 16, 32 or 64 bytes. Each line has unique
content that is immutable during its lifetime. Uniqueness and im-
mutability of lines is guaranteed and maintained by a duplicate sup-
pression mechanism in the memory system. In particular, the mem-
ory system can either read a line by its PLID (similar to a read-
ing a line in a conventional memory system using its address) or
lookup a line by content (instead of writing), returning the PLID.
The lookup-by-content operation allocates a line and assigns it a
new PLID if a line with the specified content is not already present.
When the processor needs to modify a line to effectively write new
data into memory, it requests a PLID for a line with the specified
(modified) content2. The zero PLID corresponds to zero line mak-
ing it easy to identify any zero line references. It also provides a
space-efficient representation of sparse data structures.

The PLIDs are a hardware-protected data type that can only be
created in memory or registers from the return value of a lookup-
by-content operation or by copying an existing PLID value. This
protection is implemented by per-word tags that indicate whether
the content contains a PLID3. This protection of PLIDs is necessary

2 A portion of the memory can operate in a conventional, non-deduplicated
mode for memory regions that are expected to be modified frequently, such
as thread stacks, which can be accessed with conventional read and write
operations.
3 The tags for words in the memory lines are stored in the ECC bits, using
bits that are not needed for ECC at a line granularity (e.g. commodity
DRAM chips with ECC contain 8 ECC bits per 64-bit of data yet for 16-

so that hardware can track the sharing of lines accurately. It has
the further benefit of providing protected references; an application
thread can only access content that it has created or for which the
PLID has been explicitly passed to it.

2.2 Segments
A segment in HICAMP is a variable-sized, logically contiguous
region of memory. It is represented as a DAG of fixed size lines with
data elements stored at the leaf nodes, as illustrated in Figure 1.
Figure 1a shows two memory segments representing two strings,
labeled “First string” and “Second string” with the second one
being a substring of the first. Note that the second string shares
all the lines of the first string, given the latter is a substring of the
former.

Each segment follows a canonical representation in which leaf
lines are filled from the left to right. As a consequence of this rule
and the duplicate suppression by the memory system, each pos-
sible segment content has a unique representation in memory. In
particular, if the character string of Figure 1a is instantiated again
by software, the result is a reference to the same DAG, which al-
ready exists. In this way, HICAMP extends the content-uniqueness
property from lines to segments. Furthermore, two segments in HI-
CAMP can be compared for equality by a simple comparison of
their root PLIDs, independent of segment size. For example, two
web pages represented as HICAMP strings (array of characters)
can be compared in a single compare instruction.

When content of a segment is modified by creating a new leaf,
the PLID of the new leaf replaces the old PLID in its parent line,
requiring the content of parent line to change, and thus a different
PLID for the parent line, thus requiring the parent of the parent to
change, and so on. Consequently new PLIDs replace the old ones
all the way up to the root of the DAG.

Each segment in HICAMP is copy-on-write because of the im-
mutability of the memory lines. Consequently, passing a segment
reference to another thread effectively guarantees a stable snapshot
of the segment content at essentially no cost. Exploiting this prop-
erty, concurrent threads can efficiently execute with snapshot isola-
tion [6]; each thread simply needs to save the root PLIDs of all seg-
ments of interest. This isolation means that atomic updates do not
have read-write conflicts, only write-write conflicts, which are sub-
stantially less common. In particular, it allows long running, read-
only transactions to be executed without serialization overhead. For
example, consider the task of calculating the balance of all bank
accounts by bank database for audit or management purposes, by
iterating over all accounts, using the state of the accounts at a given
point in time. Concurrently, the state of accounts may be chang-
ing by ongoing customer transactions, a process which cannot be
stalled. Modern databases support this form of query using the con-
sistent read capability (effectively providing snapshot semantics) at
the cost of copying and reverting database blocks to the start time
of the long-running transaction. HICAMP supports a comparable
facility in hardware largely eliminating this overhead.

A thread in HICAMP uses non-blocking synchronization to
perform an atomic update of a segment by:

1. saving the root PLID for the original segment

2. modifying the segment and producing a new root PLID

3. using a compare-and-swap (CAS) instruction to atomically re-
place the original root PLID with the new root PLID, if the root

byte lines 9 ECC bits are sufficient to implement standard single-error-
correcting-double-error-detecting (SEC-DED) code [20]). Error detection
can be further improved using the intrinsic properties of the HICAMP
memory system as described in Section 3.1.
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This is a long s tring containing  Another string

P1 P2 P3 P4

P5 P6

 that is short. 

First string

Second string

(a)

This is a long s tring containing  Another string

P1 P2 P3 P4

P5 P6

 that is short. 

First string Second string

append to string

P7 0

P6 P8

(b)

Figure 1: Two segment DAGs representing two strings

PLID for the segment has not been changed by another thread
(and otherwise retrying as with conventional CAS).

In effect, the inexpensive (logical) copy and copy-on-write in HI-
CAMP makes Herlihy’s theoretical construction showing CAS as
sufficient [21] actually practical to use in real applications. Because
of the line-level duplicate suppression, HICAMP also maximizes
the sharing between the original version of the segment and the
new one. If the second string in Figure 1a is modified to add the
extra characters “append to string”, the memory then contains the
segment corresponding to the second string, sharing all the lines of
the original segment, simply extended with new lines to store the
additional content and the extra parent lines necessary to form the
DAG, as shown in Figure 1b.

2.3 Virtual Segment Map
A HICAMP segment is referenced in software using a Virtual
Segment ID (VSID) that is mapped to the segment’s root PLID,
through a virtual segment map. Each virtual segment map is im-
plemented either as a HICAMP array or in the conventional part of
the memory, indexed by VSID and containing the following fields:
[rootPLID,height,flags]. Flags are used to indicate read-only
access, merge-update (described later) or to indicate a weak refer-
ence, i.e. a reference that should be zeroed when the segment is
reclaimed, rather than prevent its reclamation.

Each software object corresponds to a segment. Software asks
the memory system for a segment whenever it wants to create an
object. When software needs one data structure to refer to another
(e.g. object O1 needs to refer to O2), then an object’s VSID is stored
as the reference (O2 is represented by VSID S2; O1 stores S2 as
one of its data members). When the contents of O2 are updated, the
entry in the virtual segment map corresponding to S2 is updated
to point to the new root PLID, and thus the other referencing
objects (e.g. O1) do not have to change their references. VSIDs
are protected by tags in memory, similar to PLIDs.

When the segment map itself is implemented as a HICAMP
segment indexed by VSID, multiple segments can be updated by
one atomic update/commit of the segment map. In particular, the
revised segments are not visible to other threads until the commit
of the revised segment map takes place. A segment map can be
implemented in conventional memory, updating individual entries
directly, when this property is not required.

There is no need for conventional address translation in HI-
CAMP because inter-process isolation is achieved by the protected
references. In particular, a process can only access data that it cre-
ates or to which it is passed a reference. Moreover, a reference
(VSID) can be passed as read-only, restricting the process from
updating the root PLID in the corresponding virtual segment map
entry. Thus, a thread can efficiently share objects with other threads
by simply passing the VSID, achieving the same protection as sep-
arate address spaces but without the IPC communication overheads

forced by conventional virtual memory systems. Here, the segment
mapping acts similar to a page table and virtual memory mecha-
nism in a conventional architecture, but the “address translation”
only occurs on the first access to the segment, not on every access
to each data element.

3. Implementation
The HICAMP architecture is implementable using conventional
DRAM, with reasonable hardware complexity and performance,
avoiding any need for power-intensive hardware CAM memory, as
is described in the following subsections.

3.1 Memory System
To implement lookup by content, the main memory is divided into
hash buckets and each line is stored in a bucket corresponding to
a hash of its contents (Figure 2). Each hash bucket is mapped to a
single DRAM row. To further optimize the fetch by content, each
hash bucket includes a secondary hash map of the line content to 8-
bit signatures indicating the entries in the hash bucket, which could
possibly contain the specified content. Signatures are stored in one
line to reduce access latency (Figure 2). The lookup by content
operation consists of the following steps:

1. calculate the hash and signature values

2. read the signature line in the corresponding hash bucket

3. compare the calculated and read signatures

4. if one or more signatures match, the corresponding data lines
are read from memory and compared to the given content

5. if a data line matches, its PLID is returned

6. if there is no signature/data line match, the line is allocated and
assigned a PLID, as follows:

(a) an empty way in the hash bucket is found by checking the
signature line for a zero signature

(b) the PLID is assigned to be the concatenation of the way
number and the hash bucket number (Figure 2)

(c) the signature line is updated and written back to DRAM

(d) the data content of the line is placed in the HICAMP cache

The common case of lookup by content incurs two line reads from
DRAM when the line is present, i.e. read of the signature line and
data line, because the probability of signature match for lines with
different content is small4. When the line is not present, the com-
mon case of lookup by content requires a read of the signature line
and a write of the signature byte. The data line itself is written

4 For example, with twelve 16-byte data lines per hash bucket and 8-bit
signatures the probability of false positives, i.e. a signature match without
data line match, is less than 5%.
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Figure 3: HICAMP cache

into the last level cache (LLC) and written into the main memory
upon eviction from LLC if it is not de-allocated before then. Note
that DRAM commands for performing the lookup operation access
the same DRAM row, thereby minimizing DRAM command band-
width, energy and latency. The line is written to a separate overflow
area when the designated hash bucket is full.

Additionally, by recomputing the hash of the contents when a
line is read from memory and comparing it to the hash bucket
number where the line is read from, HICAMP can effectively
increase the error-detection capabilities of the memory system.

The HICAMP cache, like the main HICAMP memory, supports
two fundamental operations: read and lookup-by-content. Figure 3
shows the structure of the cache. The read operation accepts a PLID
(i.e. the address) and returns a cache line of content. Thus, the read
operation is essentially the same as in a conventional cache: the
PLID is used to generate an index into the cache, tags of all ways
within the indexed set are compared, and if a tag matches, the data
is returned.

To support an efficient lookup-by-content operation, the HI-
CAMP cache is designed such that each main memory hash bucket
maps to only one cache set (lines from multiple hash buckets may
map to a single cache set, but lines from a single hash bucket can-
not map to multiple cache sets). This mapping is achieved simply
by indexing the cache with a subset of the hash bits contained in
the PLID. Because this indexing maps a hash bucket to exactly one
cache set, the following key property is achieved: given the hash of
a line content, only a single index in the cache needs to be searched.

Thus, when a lookup operation is issued to the HICAMP cache, the
hash of the line is first computed, and this provides an index into the
cache set in which that data could be found. The data lines within
that cache set are then compared with the provided content. If a
match is found, the tag of the matching way is read and used to
recompose the PLID, which is returned in response to the lookup-
by-content operation.

For caches with high associativity, the lookup-by-content op-
eration in the cache can be optimized by using tag bits to reduce
the number of wide content comparisons required. Only a subset of
the computed hash bits are used for indexing into the cache, thus
the remaining hash bits are part of the cache tags. By comparing
these tag bits to the calculated hash bits, the HICAMP cache can
efficiently filter out ways that cannot contain the content.

Lines in HICAMP are reference counted by hardware, managed
similar to a software implementation of reference counting. In par-
ticular, when a line reference count goes to zero, it is de-allocated
by writing zeros to the corresponding signature. The line reference
count is set to one when the line is created and is incremented by
each lookup by content operation that matches to that line. The ref-
erence count of a line is decremented when a PLID reference to the
line is overwritten, either in another line or in the virtual segment
map. The most challenging aspect to implement in hardware is de-
allocation of a line that recursively causes many other lines to be
de-allocated; this is handled with a hardware state machine.

To reduce the number of DRAM operations, reference counts
are also cached in the HICAMP cache. For example, when the line
is allocated by lookup operation its reference count is written in the
LLC and propagated to DRAM only when the line is evicted, if it
was not de-allocated before that.

There is no traditional cache coherence problem for data lines
because lines are immutable and can thus exist in multiple caches
without conventional coherence protocol overheads. However, be-
fore an immutable data line can be de-allocated, it must be inval-
idated in all caches (e.g. using a protocol similar to invalidation-
based broadcast or directory protocol). De-allocation is performed
in the background and is not on the critical execution path; there-
fore, unlike cache coherent architectures, cache-line invalidation
will not limit HICAMP’s performance. However, the virtual seg-
ment map is mutable and will require a cache coherence protocol.

The question of scalability is a topic for future work. With
no need for locks, semaphores, or cache coherence for data lines,
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HICAMP accrues a significant scalability advantage over conven-
tional shared memory architectures.

3.2 Path and Data Compaction
HICAMP applies both path and data compaction to each segment
DAG to reduce the access cost (path length through the DAG)
as well as the memory overhead of the segment DAG structure.
Path compaction encodes the path to the line along with the PLID,
storing it in the parent node, when a parent DAG node would
otherwise have only one non-zero element (PLID). For example,
in Figure 4a, the path to the leaf “Data” line is compacted into one
entry in the root line, eliminating P2 and P3. The path is encoded
using the unused bits of the non-zero PLID5. Note that the logical
height of the DAG is stored in the corresponding virtual segment
map entry and is not affected by such compaction.

HICAMP data compaction removes the most significant zero
bytes from a word and inlines the resulting value directly into the
parent line when possible. For example, in Figure 4b, S1 and S0
are values that can be represented as 32-bit values, and so are
compacted into a 64-bit field in the parent line. More significantly,
an array of small integers (less than 255) is compacted so that
each element is stored in a single byte. Inserting a value that is
larger only affects the compaction of that element and neighboring
elements that can no longer be compacted.

Both forms of compaction can be applied multiple times in
different levels and portions of the DAG, decreasing the number
of memory reads to access data and reducing the DAG storage
overhead. In particular, in a segment that contains a large number
of zeroes, the interior nodes are compacted to provide an efficient
sparse representation.

3.3 Iterator Registers
A HICAMP iterator register is an extended form of the conven-
tional index or address register, extended to support efficient access
to data in segments by storing the path through the DAG to its cur-
rent line position (Figure 5). In HICAMP, each memory access is
made through an iterator register. An ALU operation that specifies
a source operand as an iterator register accesses the value of the
current offset of the iterator register within the associated segment.
A HICAMP processor ideally has a comparable number of iterator
registers to the number of general-purpose registers in a conven-
tional processor, e.g. 16 to 32 registers.

Upon initialization with a specific VSID and offset, an iterator
register loads and caches the path to the element at the specified
offset in the DAG. Upon increment of the iterator register, it moves
to the next non-null element in the segment. In particular, the
hardware detects if the next portion of the DAG refers to the zero
line and moves the iterator register’s position to the next non-zero
memory line. The register only loads new lines on the path to the
next element beyond those it already has cached. In the case of the
next location being contained in the same line, no memory access
is required to access the next element. Using the knowledge of the
DAG structure, an iterator register can also automatically prefetch
memory lines in response to sequential access to the segment.

Using an iterator register, sequential access to a segment rep-
resenting a dense array is at most two times the number of lines
of accessing the same segment stored in conventional memory sys-
tem6. Moreover, in some cases, the overall cost of a HICAMP array

5 Here, “unused” refers to high-order bits of the PLID not used because they
are not needed to address the available DRAM. For example, with a 32-byte
line, a 32-bit PLID is sufficient to access 128 gigabytes of DRAM.
6 For example, with 16-byte lines and 64-bit PLIDs, the DAG overhead is
at most 2x in terms of memory space and line reads for sequential access.
With longer 32-byte or 64-byte lines this overhead is smaller.

can be less expensive because it does not need to be copied to be
dynamically grown, as is typically the case in a conventional archi-
tecture. Also, with a sparse array such as a sparse matrix or asso-
ciative array, the cache line references can be comparable or less,
given the data and instruction overhead required for these software
implementations and the deduplication of lines that HICAMP pro-
vides.

A store operation updates the current data element pointed to by
the iterator register. To support efficient incremental updates, the it-
erator register caches an updated line as a transient line7, namely a
line in a pre-defined, per-processor area of the memory that oper-
ates outside of the normal duplicate-suppressed region. It also tags
the update to indicate the requisite changes to the parent nodes on
the path through the DAG. Then, after potentially multiple changes
to a line (and potentially many lines), when the iterator register is
“committed” by software, the transient lines are converted to per-
manent (duplicate-suppressed) lines using lookup by content oper-
ations, and a new root PLID for the modified segment is acquired,
as described earlier. (An iterator register also supports an abort ac-
tion, in which case the modifications are discarded, reverting the
segment to the original state, i.e. old root PLID.)

Using the transient lines, the cost of allocating content-unique
lines at the leaf and all the way up to the root of the DAG is deferred
until the commit point, offering the ability to amortize this cost over
many writes. In the extreme, a local temporary array can be created
by a procedure using the transient lines, used and discarded and so
never committed.

Overall, the iterator register provides a hardware construct that
supports iterator concept in most modern programming languages
as well as in SQL. Moreover, unlike conventional programming
language constructs, it efficiently supports the snapshot and atomic
update semantics of the SQL cursor.

3.4 Merge-update
HICAMP supports merge-update of segments to facilitate updates
of high contention data structures such as maps, queues and coun-
ters. For example, if two non-conflicting entries are added con-
currently to the same directory, represented as a segment, merge-
update produces a segment that corresponds to the directory with
these two entries added, rather than aborting one of the concur-
rent transactions. In more detail, if a segment is marked as merge-
update, when a thread detects during a CAS that the root PLID
has been modified by another thread (resulting in a new DAG for
the segment), the system attempts to merge the thread’s copy with
the updated segment content by performing the following steps for
each line offset:

1. compute the difference between the “original” segment line and
the “modified” segment line

2. apply this difference to the “current” line content of the segment

3. add this line to the “merged” segment at the current offset

If the segment contains a PLID field, as would be the case with a
directory, the field in the “current” segment is required to be either
the same as the “original” segment or the same as the “modified”
segment. That is, the two updates cannot store distinct PLIDs in
the same field; otherwise the merge-update fails. The uniqueness
of segments and subsegments allows merge-update to efficiently
identify sub-DAGs of the “current” and “modified” segment that
are identical, and skip the line-by-line actions above for such a sub-
DAG.

7 Transient memory lines require no cache coherency because the lines are
allocated per core and converted to immutable lines before they are made
visible to other cores.
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Merge-update can also apply to a segment of counters. In this
case, the difference produces the increment applied by the thread,
which is then added to the value in the “current” segment to pro-
duce the new count.

This capability can be exported to software level as an mCAS
operation defined in pseudo-code as:

bool mCAS( old, curAddr, new ) {
try {

cur = *curAddr;
while(!CAS(old,cur,new)) {

new = merge(old,cur,new);
old = cur;

}
} catch(...) {

return false; /* merge failed */
}
return true;

}

Here, the merge operation performs the merge-update and returns
true or else fails and returns false.

Merge-update addresses a recognized weakness of non-blocking
synchronization (NBS) relative to lock-based synchronization,
namely repeated aborts in the case of high contention structures.
In particular, merge-update easily handles concurrent updates to
maps, queues and counters, the most common high-contention data
structures, only aborting when the updates are logically conflicting,
which is expected to be rare.

4. HICAMP Programming Model
The HICAMP programming model is similar to a conventional ob-
ject oriented programming (OOP) with minor changes for snap-
shotting/transactional behavior.

Each software object in HICAMP is mapped to a segment iden-
tified by a VSID and each pointer field in an object stores a VSID
corresponding to the object to which it is pointing, or zero if a null
reference. Each software iterator is implemented as an iterator reg-
ister when the iterator is active.

4.1 Arrays and Maps
A software array is implemented as a HICAMP segment. Unlike an
array in a conventional memory system, it can be extended in length
dynamically without reallocation and copy; the DAG is simply
extended with additional lines. This property also means that a
buffer overflow bug or compromise cannot cause another object to
be overwritten. If the array is sparse, it is automatically stored in a
space-efficient form because of path and data compaction.

Thus, for example, an ordered collection of objects indexed by
a 64-bit time stamp can be efficiently represented as a segment with
the VSID of the object stored at the numeric index equal to its time
stamp. In contrast, the same collection in a conventional memory
system would require a red-black tree or similar data structure to
handle the ordering, have a large index size and the sparsity of the
data relative to the index, with attendant costs in memory accesses
for performing lookup, rebalancing and locking for concurrency.
An ordered collection indexed by a string value can be realized
using two arrays, one mapping the root PLID of the string segment
to the corresponding value and a second segment for storing the
values in order for iteration. The memory deduplication minimizes
the space overhead that this two-array solution would incur in a
conventional memory.

A map is implemented as a sparse array, indexed by unique root
PLID of the key, which can be an arbitrary byte string. Writing
to the map entails storing through the iterator register. With HI-
CAMP deduplication and path and data compaction, this structure
incurs memory access overhead comparable to the various software
tree data structures, which also require rebalancing. It entails more
memory accesses than a map implemented as a contiguous array
in a conventional architecture. However, it provides a far superior
worst-case performance guarantee compared to a conventional im-
plementation of a hash table. Moreover, it avoids the overhead in-
curred by the hash table for computing the hash on the key and
further accessing the key to verify the match. Finally, iteration over
the HICAMP map is significantly more efficient than over a con-
ventional memory hash table that is sparsely populated (which is
required to avoid collisions and chaining). In general, all the data
structures we have considered have an efficient HICAMP imple-
mentation.

4.2 Iterators
The software concept of an iterator, an established design pattern
for accessing data structures8, maps directly onto the HICAMP
iterator register. For example, iteration over a collection appears
conventional:

for( it = obj.begin(); it != obj.end(); ++it ) {
*it = newVal;

}
it->tryCommit();

8 As provided in many programming languages and libraries such as C++
STL, Java and C#.
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The ability to increment position pointed by the register to the
next non-null element in the segment allows efficient iteration over
sparse vectors and associative arrays. DAG prefetching and parent
node caching in iterator register further support efficient access.

Moreover, the snapshot isolation provides superior iterator se-
mantics compared to that feasible on a conventional architecture.
Specifically, an iterator can iterate over the collection, being as-
sured of visiting the collection exactly as it was when iterator reg-
ister was loaded (snapshot was taken), independent of the actions of
other threads. In contrast, conventional languages and systems re-
sort to exceptions or undefined behavior when concurrent updates
occur, a questionable approach for multi-core systems.

4.3 Using Merge-Update
A data structure for which merge-update semantics are acceptable
can be updated using mCAS (Section 3.4) rather than CAS, thereby
allowing many conflicts to be resolved more efficiently and elim-
inating an application level retry most of the time. For example,
concurrent insert and delete operations on the key-value map that
do not modify the same entry are resolved by merge-update rather
than redoing the application-level operation (this is because an in-
sert operation adds a value to a location which was zero and a delete
operation sets a non-zero location to zero). Similarly, concurrent
updates to counters can be resolved to produce the desired sum in
a counter without application retry. High-contention queues can be
implemented similarly, using the merge-update operation to store
the queue data in a segment and merge-update of the counters to
keep track of head and tail locations.

4.4 Example: Memcached Implementation
Memcached [15] is a practical example of how facilities provided
by HICAMP can be effectively used to implement a real and
performance-critical application. Memcached has a relatively sim-
ple API. The main commands are set key-value pair, get value cor-
responding to a key, and delete key-value pair. (There are also more
complicated commands like add, replace, increment/decrement,
and CAS but for brevity we limit our discussion to basic com-
mands.) Its implementation on a conventional architecture is con-
ceptually simple: a hash table is used for a key-value map.

However, in practice the implementation is complicated because
the map is accessed as a separate process or processes over socket-
based communication channels. Further complications arise from
conventional memory management issues: the hash table needs re-
sizing, which is performed by a separate thread. To avoid memory
fragmentation and overheads of malloc() memcached pre-allocates
user configured memory quota and uses a custom slab memory
allocator. Reference counting is used to keep track of the allocated
memory and to ensure that a chunk of data is not de-allocated
before an I/O operation is completed. Additionally, a time-out
mechanism is necessary to avoid memory leak that can arise from
rare corner-case conditions of reference counting.

In contrast, a memcached implementation on HICAMP archi-
tecture is straightforward: the map of key-value pairs (KVP) is im-
plemented as a HICAMP (sparse) array indexed by the root PLID
of key strings. Each entry of the array stores the root PLID for the
associated value or zero if no associated value is present in the map.
HICAMP deduplication ensures the uniqueness of the root PLID
for any given key.

At the beginning of processing a get command, a client thread
(re)loads an iterator register with a read-only reference to the KVP
map segment, at the offset corresponding to the desired key. Thus,
for a memcached command that does not modify the map, access
to the map does not require interprocess communication, locking

or any other form of synchronization9. In a typical memcached
workload such commands are 90-99% of all issued commands.
Because of the HICAMP snapshot isolation, each client thread
is completely isolated from any concurrent updates to the map.
Moreover, because of the non-blocking synchronization, there is no
interference between threads that can cause blocking or deadlock.

In the HICAMP implementation, a separate thread can perform
updates, having a read-write reference to the map segment. Other
threads queue update requests with this special thread. Alterna-
tively, client threads can be trusted to update the map directly by
providing them with a read-write reference to the map segment.
In this case, an update is atomically committed when the new root
PLID for the revised map is written to the corresponding segment
map entry. Because this write is hardware-atomic, a client pro-
cess cannot leave the map in an inconsistent state, even after be-
ing halted at an arbitrary point in its execution10. If the client fails
before the root PLID is updated in the segment map, the reference
to the revised DAG is eliminated and all the lines corresponding
to the modifications are reclaimed, leaving the system in the orig-
inal state. Thus, because of snapshot isolation and atomic update,
HICAMP provides the hardware support equivalent to separate ad-
dress spaces, while allowing direct access to shared data structures.

Memcached commands that update the key-value map can
benefit from merge-update (Section 3.4), which eliminates re-
execution of commands unless there is a true data conflict (Sec-
tion 5.1.1).

Similar approaches can enhance access to shared state in appli-
cations beyond memcached, for example, an in-memory relational
database. A client thread with a read-only reference to the database
can access the state and process a query with its own private snap-
shot of the database state. It constructs a view as a new segment that
specifies the result of the query, while referencing data directly in
the database itself. Updates can be performed either by a designated
updater thread or by the (trusted) client threads.

In summary, HICAMP provides substantial benefits to estab-
lished software structures. Nevertheless, there is a long and sorry
history of computer architectures that purport to do this, yet result
in implementations that are slower than a careful software imple-
mentation on top of the conventional Von Neumann architecture,
making these architectures unviable. Our evaluation in the next sec-
tion addresses this legitimate concern.

5. Evaluation
Our preliminary evaluation of the HICAMP architecture uses both
analytical techniques and software simulations with different data
sets and traces, in various specific application domains. The three
key measures that we consider are: off-chip memory traffic, re-
duction in memory footprint, and concurrency overhead. The con-
ventional architecture was simulated using the PTLSim [33] cycle
accurate processor simulator and DineroIV [1] memory hierarchy
simulator, while the HICAMP memory system was simulated by a
custom model. Both architectures used the same memory system
parameters, namely: a 4-way 32 KB L1 data cache, a 16-way 4 MB
L2 cache, and 16-byte cache lines. Some experiments use larger
line sizes, as noted in the individual subsections.

9 memcached does not have any ordering requirements for commands from
different clients/network connections. Each client/connection is handled by
a separate thread which processes commands in order and does not need to
enforce any ordering with other connections (or threads that handle them).
10 This implementation is appropriate when client software can be assumed
to be fail-stop. If the client software is truly untrusted, i.e. can be malicious,
a trusted updating process is required.
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5.1 Memcached
The HICAMP implementation of memcached has significant per-
formance advantages over the conventional “separate server” im-
plementation because the socket communication and associated
signaling, queuing, and context switching costs are eliminated. The
following analysis shows how capabilities of the HICAMP archi-
tecture achieve predictable and efficient parallel performance.

5.1.1 Concurrent Performance
During execution of a set command, the write and commit of the
new key/value pair and associated control state can be performed
independent from other threads, because new segments are allo-
cated for these data fields. However, update of the key/value map
itself can cause conflict.

For conservative estimation we assume an 8-processor system
that performs 200K commands per second [27] and a 10:1 get to set
command ratio. One get command is executed every 5 microsec-
onds and one set command is executed every 50 microseconds on
average.

To update the key/value map, the software first reloads the
iterator register with the root node of the DAG, fetching the path
to the leaf node that is to be updated. The reload may well hit in
the cache for several lines but assuming worst-case cache misses it
would require log2(N) DRAM reads to access the leaf on average
for N KVPs. The leaf line is then updated in the iterator register
and the whole path from the leaf to root is regenerated. Because
the leaf node is new content, all nodes up to the root of the map
(log2(N) total for 16-byte lines) must be modified.

To perform a lookup for a line with new content, the memory
controller reads the signature line and compares stored signatures
with the signature of the new line (Section 3.1). If the new content
is not present in the memory, the probability of a signature match
is small (see footnote in Section 3.1). If there is no match, the
memory controller assigns a new PLID for the line. Thus, signature
read and compare are on the critical path of acquiring a PLID for
new content, but other operations (updating signature line, etc.)
are not and can be performed in parallel. Thus, the time to reload
and update map segment is 2 × log2(N) × (DRAM latency).
Assuming that N is 106 and DRAM latency is 50ns, the total time
to update the map is 2 × 20 × 50ns = 2µs. The probability of
a conflict can be estimated as 2µs/50µs = 0.04. This result is
not very sensitive to the number of KVPs in the map because of
logarithmic dependence, e.g. for N equal to 109 the worst-case
probability of conflict increases to 0.06. Moreover, for longer 32-
byte or 64-byte lines the number of nodes that need to be updated
and the probability of conflict decrease proportionally.

In case of a conflict, merge-update (Section 3.4) is used to
merge changes to the map from the processor whose CAS operation
failed with the new version of the map. In this case, the processor
reloads the map and compares each level of the DAG with previous
version (snapshotted by iterator register). Because two processors
are unlikely to write into the same location in the map, new and pre-
vious versions have the same content at some level of the DAG. The
merging processor reloads all nodes up to this level and regenerates
the nodes above all the way to the root. Assuming that updates to
the map are uniformly distributed, the probability of conflict one
level below the root is 0.5, two levels below root is 0.25, etc. The
average latency of merge-update therefore is the sum of a simple
geometric series: 2×(DRAM latency)×(1+0.5+0.25+...) ≈
4 × (DRAM latency) = 200ns, which is significantly smaller
than the latency of original map update or application-level retry.

If contention on a map is high for merge-updates, the map can
be split into an array of segments (i.e. a segment that points to
the subsegments), indexed by several bits of the key PLID, while
the rest of key PLID bits can be used as offset within the selected
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Figure 6: Memcached DRAM accesses

subsegment. Such a split would reduce probability of conflict and
re-execution even further.

5.1.2 Off-Chip Memory Traffic
Figure 6 shows number of DRAM accesses for both HICAMP
and a conventional memory system (using 16-, 32- and 64-byte
line sizes) for memcached processing 15000 requests11. “Reads”
is the number of DRAM reads due to cache misses. “Writes” is the
number of DRAM writes due to cache writebacks. For HICAMP,
Figure 6 also shows the number of DRAM operations necessary
for content lookups12, line de-allocation and reference counting.
For the conventional memory system, we used trace option in
VMware Workstation-7.0.0 (build 98145.x86 64) to generate the
memory access trace, which includes more than 300 million loads
and stores. It was processed by the DineroIV [1] cache simulator
to generate DRAM access numbers. As shown in the figure, the
number of off-chip DRAM accesses for HICAMP is comparable
or smaller than for a conventional memory system.

Beyond these performance benefits, the HICAMP provides
memory savings, as described next.

5.1.3 Memory Compaction
Table 1 shows HICAMP data compaction results for several types
of data. For text data like HTML web pages and JavaScript scripts,
compaction savings range from approximately 1.5x to more than 4x
over conventional memory13. For binary data image files in com-
pressed JPEG and GIF formats, which result in high-entropy data
exhibiting few deduplication opportunities, HICAMP representa-
tion incurs a 10% overhead for short lines. Beyond these savings,

11 These traces and statistics were generated after pre-loading 100000 items
into memcached and processing another set of 15000 requests. Memcached
items were generated from Facebook web-page dumps (downloaded from
Stanford Infolab web-site) to emulate typical memcached dataset. The re-
quest trace was generated using a power-law distribution for item frequency
and size which is typical for memcached workloads.
12 Signature line reads/updates and data line reads/writes (Section 3.1).
13 Compaction is defined as conventional memory requirement divided by
the HICAMP memory requirement.
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Dataset Wikipedia Facebook
webpages webpages scripts images
May’06 May’08 Sept’08 May’08 Sept’08 May’08 Sept’08

Number of items 99957 9741 65122 3106 1467 24827 31155
Total size, Mbytes 3249.58 179.38 3286.81 4.45 0.7 96.17 98.62

Compaction
LS=16 1.71 4.27 1.84 3.17 4.06 0.9 0.93
LS=32 1.5 3.87 1.83 2.6 3.38 1.03 1.07
LS=64 1.29 3.11 1.35 2.06 2.29 1.07 1.09

Table 1: Memcached data compaction (LS is line size)

HICAMP also eliminates duplication of data between processes
and socket buffers, the size of which can be substantial [27].

We expect the HICAMP architecture to be compelling in other
settings, including similar web and database-like applications. For
example, some fault-tolerant embedded systems such as 10 Gbps
Ethernet switches [5] incorporate a database and numerous client
processes to achieve fault-tolerance and in-service software up-
grade capability. These systems could use HICAMP to reduce com-
munication overhead and memory duplication while retaining their
robustness. Even in more restricted environments, such as hand-
held devices, HICAMP could provide protected sharing of data be-
tween untrusted applications while providing memory compaction
to reduce power demands.

In the completely different domain of high-performance com-
putation, HICAMP also demonstrates substantial benefits, as de-
scribed next.

5.2 Sparse Matrix Computation
Sparse matrix computations, and, in particular sparse matrix dense
vector multiplication (SpMV) [32], are often the critical inner loop
of certain applications including general high performance com-
puting (HPC), embedded control systems, linear programming, and
convex optimization. For SpMV, performance is limited by mem-
ory bandwidth, yet peak bandwidth is not achieved because of the
unpredictability of the vector access sequence. Performance as low
as 10% of peak FLOP rate has been observed [30]. Thus, the pro-
gramming language and architecture challenge is supporting ef-
ficient execution of sparse matrix computations, particularly in a
highly concurrent processing environment [29].

In HICAMP, a general (dense) matrix representation can be
used to efficiently represent a sparse matrix, as described earlier,
with an iterator providing efficient access to the data. Alternatively,
a representation similar to the conventional compressed sparse
row (CSR) format can also be used. To optimize further, one can
recognize that many applications use sparse matrices with a high
degree of self-similarity – they are either symmetric or have a high
degree of symmetry, or have repeating patterns of non-zero values.
To exploit matrix self-similarity, we have used the symmetric quad-
tree format (QTS) that breaks a matrix into four regions, which
have a dimension of an even power of two (and are zero padded if
necessary). Sub-matrices A11 and A22 are stored in the left subtree
of the DAG while sub-matrices with A12 and A21

T stored in the
right subtree. If the sub-matrices are symmetric, A12 and A21

T are
equal and hence have the same PLID as their root.

Some sparse matrices with little self-similarity in non-zero val-
ues are not compacted well by simple sparse array or quad tree rep-
resentation, but still have a high degree of non-zero pattern similar-
ity. In many of these cases, the underlying structure of this matrix
can still be exploited using the non-zero dense (NZD) format where
two HICAMP segments represent a matrix: one segment stores the
non-zero pattern as a quad-tree and exploits pattern symmetry and
self-similarity, while a separate segment is filled to be nearly dense
with the original non-zero values.

Category Matrices Savings StdDev
All 100 62.7% 36.5%
Non-symmetric 77 58.5% 33.9%
Symmetric 23 76.9% 41.8%
FEMs 29 70.7% 40.2%
LPs 15 43.0% 31.7%

Table 2: Sparse Matrix Compaction

The DAG structure lends itself to tree-recursive algorithms and
many important operations in linear algebra can be naturally ex-
pressed in such form [18]. During tree traversal, zero and duplicate
sub-matrices can be detected by PLID comparison. Such optimiza-
tions reduce number of memory accesses and increase the perfor-
mance of the memory system.

5.2.1 Off-Chip Memory Traffic
The SpMV kernel was used to compare HICAMP to a conven-
tional memory system in terms of number of accesses made to the
off-chip memory. We compare a HICAMP SpMV algorithm with
duplicate sub-matrix detection against a conventional CSR SpMV
algorithm or against a symmetric CSR SpMV algorithm [24], as ap-
propriate. In HICAMP, no distinction was made for symmetric ma-
trices. Our test matrices were pulled from the University of Florida
Sparse Matrix Collection [10] and represent a variety of application
domains.

Considering only matrices that are larger than the L2 cache
size, the results indicate that HICAMP reduces off-chip memory
accesses on average by 20%.14 Figure 7 plots the ratio of off-chip
memory accesses in HICAMP to a conventional architecture using
a log2 scale; matrix size is plotted on the abscissa. As shown in the
figure, for most of the matrices HICAMP reduces main memory
accesses by compacting the sparse matrix and reducing the storage
requirements, as described next.

5.2.2 Memory Compaction
We compared the storage requirements for 100 large sparse ma-
trices when stored in HICAMP versus the conventional memory,
which uses CSR. In CSR, an m by n matrix with nnz non-zero
entries requires 8 × (1.5nnz + 0.5m) bytes (assuming 8 byte
double precision floats and 4 byte integer indices). For a symmet-
ric sparse matrix, the term nnz is replaced by nnzon-diagonal +

0.5nnzoff-diagonal. We compare the best-known HICAMP format
(QTS or NZD) against CSR, or symmetric CSR, as appropriate.

Table 2 lists the ratio of the matrix size in HICAMP versus
conventional architecture, categorizing matrices in different classes
and problem domains, while Figure 8 shows the same ratio for all
matrices. Matrices are the same size or smaller in HICAMP except
for a few having negligible increases due to the DAG overhead.
The overall average is 62.7 bytes in HICAMP per 100 bytes on

14 Excluding a matrix that was compacted by 4000x. Including this matrix
the overall savings are 38%
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Figure 7: Main memory accesses for SpMV Figure 8: Sparse matrix memory footprint

a conventional architecture, indicating that HICAMP achieves sig-
nificant data compaction over a broad range of matrices.

In addition to improving off-chip memory traffic and storage
footprint, HICAMP also allows efficient, highly parallel execution
of sparse matrix computations by partitioning the result matrix
among K threads. Each thread computes from the previous matrix
results, preserved by the snapshot isolation, generating the result
partition it is assigned. At the end of a round, each partition is
merged into the new result matrix, which is then made available
as read-only data for the next round. Thus, the snapshot isolation,
logical copy and merge-update provide architectural support for
a simple but efficient programming model of concurrent matrix
computation while ensuring protection between threads.

5.3 Virtual Machine Hosting
Virtual machine (VM) hosting is an important commercial appli-
cation, which places significant demands on operating systems and
hypervisors. It also provides a means for HICAMP to run legacy
code, i.e. software designed for the conventional Von Neumann ar-
chitecture. With an increasing number of cores and faster network
connections allowing an increasing number of VMs per physical
host, there can be a significant amount of duplication of code and
data within the physical memory of the host, given duplicate copies
of the same or similar operating systems and applications.

Some VM hypervisors such as VMware ESX server check for
duplicate pages in software and replace multiple copies with a sin-
gle shared copy in the machine memory [31]. Further research [17]
has illustrated the benefits of sharing at finer granularity than a
page. However, with the increasing size of physical memory, dedu-
plication beyond just static code pages can incur significant soft-
ware overhead. Moreover, with large (2 megabyte) pages, moti-
vated by quadratic cost of nested page table lookup and reducing
the size of page tables [7], the page-level sharing is significantly
less effective.

HICAMP automatically provides fine-grain sharing at the line
level without software overhead and reduces the memory footprint
of hosted VMs. This compaction can potentially reduce the num-
ber of off-chip DRAM accesses, improving performance, reducing
power and increasing overall efficiency.

To evaluate HICAMP for virtual machine hosting, we used
the VMmark virtualization benchmark (version 1.1.1) [2] from
VMware. VMmark organizes units of work in tiles, where each tile
contains six virtual machines. There is a variety of 32-bit and 64-

bit operating systems as well as various types of workloads in each
tile (e.g. database, mail server, java server, etc.). We evaluate HI-
CAMP’s memory consumption when loading a number of virtual
machines and tiles into the system.

We took snapshots of the memory of virtual machines while
running benchmark workloads. These snapshots were then loaded
into HICAMP’s memory system simulator to compute the total
number of memory lines required and were also analyzed to de-
termine the number of duplicate pages. Figure 9 shows consumed
memory when scaling number of VMs for each of the workloads in
a VMmark tile and compares it to an ideal page sharing scheme
where duplicate pages are detected and shared instantaneously.
While not realistic, this provides an upper bound on how well a
page sharing algorithm at the OS or hypervisor level can save mem-
ory. In practice, the benefits are less than this ideal scheme because
scanning memory and detecting duplicate pages consumes proces-
sor cycles and occurs gradually over time.

Figure 10 shows the same comparison for VMmark tiles when
loaded as a whole. HICAMP compacts memory footprint of VMs
by a factor between 1.86x and 10.87x, while in ideal page sharing,
the compaction ranges between 1.44x-5.21x. For tiles, HICAMP
compacts the memory more than 3.55x while ideal page sharing
compacts it only 1.8x.

Overall, HICAMP simplifies the OS/hypervisor, reduces pro-
cessing overhead and improves the utilization of memory by pro-
viding transparent data sharing in hardware.

6. Related Work
Fresh Breeze [11] supports software structuring similar to HI-
CAMP, providing protected “global” references and DAG struc-
ture support for sparse matrices. However, Fresh Breeze is focused
primarily on supporting functional programming, not fault-tolerant
thread isolation. It does not support a segment map or memory
deduplication and compaction mechanisms of HICAMP. Fresh
Breeze also does not appear to support an iterator register mecha-
nism for efficient access to memory, instead relying exclusively on
SMT to accommodate the additional latency to memory, and does
not appear to support merge update.

Transactional Memory (TM) has been investigated by a variety
of efforts, starting from the Herlihy and Moss paper [22]. However,
TM does not provide isolation between threads. Moreover, TM uses
the update-in-place approach to transactions so it suffers from read-
write conflicts. For example, a transaction iterating over a large

296



0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

G
B

)

# of VMs

Database Server

Page sharing

Hicamp 64B

Allocated

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

G
B

)

# of VMs

Java Server

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

G
B

)

# of VMs

Mail Server

2

3

4

5

M
e

m
o

ry
 (

G
B

)

Web Server

1

1.5

2

2.5

M
e

m
o

ry
 (

G
B

)

File Server

1

1.5

2

2.5

M
e

m
o

ry
 (

G
B

)

Standby Server

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

G
B

)

# of VMs

Database Server

Page sharing

Hicamp 64B

Allocated

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

G
B

)

# of VMs

Java Server

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

G
B

)

# of VMs

Mail Server

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

G
B

)

# of VMs

Web Server

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

G
B

)

# of VMs

File Server

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

G
B

)

# of VMs

Standby Server

Figure 9: Memory consumption of individual VMs in a VMmark tile
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collection can be repeatedly aborted by updates to the collection.
In contrast, HICAMP implements an alternative approach based on
snapshot isolation [6], so it only has write-write conflicts, which
are far less frequent.

Hardware Snapshotting has been proposed separately [9]. How-
ever, the support in this case is coarse-grain, restricted in number
of snapshots, and focused on actions such as checkpointing, not
changing the application software execution semantics as in HI-
CAMP. Snapshotting was also proposed as an extension of soft-
ware transactional memory [26], however, it exhibits significant
overheads of maintaining and tracking multiple versions of data
in software.

Hardware support for non-blocking synchronization dates back
many years to CAS on the early IBM computers and double-CAS
on the Motorola 68040. It is known to have significant advantages
over locking [16]. In HICAMP, a simple CAS suffices to update
complex data structures and avoids the so-called ABA problem.
Reference semantics, hardware support for data structures, and in
particular the segment map mechanism allow atomic updates across
multiple objects/data structures.

Memory Compression has been proposed for main memory [14],
caches [4, 12] or both [13, 19]. A mergeable cache architecture was
designed [8] to de-duplicate the content of second level cache. This

approach only supports deduplication for cache lines that have the
same virtual address, using page coloring to ensure that such lines
are located in the same set. The HICAMP architecture supports
general deduplication in main memory and caches, thereby reduc-
ing memory bandwidth and footprint.

VMware [31] provides transparent page sharing to reduce dupli-
cate memory content at the page level. This process is configured
by default to take place at a time scale of minutes in order to mini-
mize processing overhead, so it only identifies static pages of long-
running applications. The Difference Engine [17] project carries
this direction further to detect intra-page differences, increasing
software overhead and complexity. HICAMP provides finer-grain
sharing in hardware without such overhead. However, we regard
the key advantage HICAMP provides over software page sharing as
providing line granularity in the presence of the trend to 2 megabyte
pages [7].

There are some similarities between HICAMP and the Intel
iAPX 432 project [3] including the protected segments and the
support for higher-level programming constructs. However, the 432
was focused on providing protection with its segments and did not
provide the functional and performance benefits HICAMP does
of deduplication, snapshot semantics and atomic update. The 432
also suffered because of the limited gate count per chip that was
available 30 years ago, forcing it to be implemented across multiple
chips, with severe performance implications. In contrast, HICAMP
appears to easily fit within current processor gate counts and tackles
a key problem of modern applications and processors, namely the
performance overhead/limitations arising from the memory system.

7. Conclusions
In this paper, we have presented HICAMP, a general-purpose com-
puter architecture designed to address the key challenges facing
programming languages and operating systems to support de-
manding complex, concurrent software on multi-core processors.
It directly challenges conventional wisdom by providing hard-
ware support for key programming language features, including
variable-sized objects, iterators, “const” access, associative arrays
and sparse matrices. It also supports non-blocking synchroniza-
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tion and structured data prefetching. It further supports snapshot
semantics and atomic update, building on the proven benefits of
these properties in database systems [6]. Finally, it provides mem-
ory deduplication at cache line granularity, complementing the
page-sharing mechanisms in many operating systems and virtual
machine hypervisors.

The protected segment references that arise in this architecture
together with the concurrency-safe data structure support allow
multiple threads to safely share structured data without the space
and IPC overhead of separate address spaces and without the loss
of isolation associated with conventional shared memory threads.

Even with these significant benefits, HICAMP is practical to
implement with conventional DRAM, with an acceptable level of
hardware complexity, and can achieve competitive, if not supe-
rior, performance for appropriately structured applications. We also
show that it can provide performance benefits for existing software
applications running in a virtualization environment, based on its
deduplication capability.

HICAMP performance is a key focus of our results in this pa-
per. Our evaluation shows that HICAMP provides significantly bet-
ter DRAM bandwidth utilization for applications structured to take
advantage of its features compared to conventional architectures. In
particular, our measurements show that the reduced memory foot-
print provided by deduplication, together with the iterator register
support, including data and path compaction, largely counterbal-
ances the extra memory accesses required by the DAG represen-
tation of segments and the extra cost of content lookup in mem-
ory, both in terms of number of DRAM accesses and DRAM band-
width. Moreover, certain cases such as sparse matrix applications
show substantial reduction in memory size and access.

Beyond these advantages, the HICAMP memory deduplication
and compaction reduces memory requirements, reducing capital
cost and improving energy efficiency. Finally, studies [23] show
that typical server utilization of DRAM bandwidth is less than 10
percent in many cases, so HICAMP can be viewed as exploiting
this under-utilized resource to improve application properties, in-
cluding performance.

In this comparison, the efficiency of HICAMP should be com-
pared to the inefficiency of the established database process ap-
proach, where up to 87 percent of the performance is lost on a
conventional architecture [28] to overheads that HICAMP largely
eliminates by implementing necessary support in hardware. At the
same time, we recognize that certain computing actions are sig-
nificantly more expensive in HICAMP than a conventional Von
Neumann architecture, such as randomly accessing data in a large,
dense array. Our claim is that applications do not generally contain
such behavior in the performance-critical portions, these perfor-
mance pitfalls of HICAMP can be characterized and understood by
the programmer, and there are reasonable alternatives in the cases
that we have investigated. In general, HICAMP tackles macro-
scale inefficiencies in applications such as interprocess communi-
cation overhead, lock synchronization overhead and memory copy-
ing, which we expect to become worse with increasing number of
cores and have been somewhat neglected by the conventional focus
on micro-benchmarks.

Overall, HICAMP offers a promising direction for future
multi-core systems to properly support complex, concurrent, data-
intensive software applications, simplifying operating systems and
improving practical programming language semantics. It recog-
nizes that access to shared structured data is a key problem in
many demanding applications ranging from web servers to sci-
entific computation to embedded systems, and demonstrates that
memory system innovation can provide significant benefits to the
software.
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