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Abstract

Verification of chip multiprocessor memory systems re-
mains challenging. While formal methods have been used to
validate protocols, simulation is still the dominant method
used to validate memory system implementation. Having
a memory scoreboard, a high-level model of the memory,
greatly aids simulation based validation, but accurate score-
boards are complex to create since often they depend not
only on the memory and consistency model but also on its
specific implementation. This paper describes a methodology
of using a relaxed scoreboard, which greatly reduces the
complexity of creating these memory models. The relaxed
scoreboard tracks the operations of the system to maintain
a set of values that could possibly be valid for each memory
location. By allowing multiple possible values, the model used
in the scoreboard is only loosely coupled with the specific
design, which decouples the construction of the checker from
the implementation, allowing the checker to be used early
in the design and to be built up incrementally, and greatly
reduces the scoreboard design effort. We demonstrate the use
of the relaxed scoreboard in verifying RTL implementations of
two different memory models, Transactional Coherency and
Consistency (TCC) and Relaxed Consistency, for up to 32 pro-
cessors. The resulting checker has a performance slowdown
of 19% for checking Relaxed Consistency, and less than 30%
for TCC, allowing it to be used in all simulation runs.

1. Introduction

Validating the operation of a multiprocessor’s memory
system remains a challenging task. Most practical approaches
to validation have focused on a framework based on either
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race-free diagnostics or pseudo random test suites combined
with a golden model (also known as a scoreboard) of the
memory system behavior. While this methodology is widely
used and works well, constructing the scoreboard for a
modern system is a difficult task. One of the factors that
makes it complex is that memory consistency models such
as sequential consistency (SC) specify rules and axioms that
are easier to describe by a non-deterministic state machine—
they do not completely specify the memory system’s behavior.
As a result, a given consistency model may have multiple
correct implementations that perform differently, and thus
need different golden models. This coupling causes two
problems. First, one needs to create a new golden model for
each implementation, and second, it is hard to keep the val-
idation model completely separate from the implementation,
which can lead to correlated errors. This problem is only
getting worse with the requirement of some multiprocessor
systems to support multiple consistency models, including
a transactional memory model like Transactional Coherency
and Consistency (TCC) [1].

Recent attempts, such as TSOtool [2], take a different
approach to the problem of memory verification. Instead of
dealing with the complexity of the implementation, TSOtool
does a post-mortem analysis of the processors’ traces. This
approach checks that the observed trace values are logically
correct with respect to the consistency model. Since it does
not specify what the output should be at each cycle, or even
what the ordering must be, it reduces the coupling between
the verification model and the design details. The key insight
is that this undesirable verification-design coupling can be
broken by creating a checker that allows multiple output
traces to be correct. We leveraged this insight from TSOtool
to create a new approach toward validating memory system
behavior, the Relaxed Scoreboard.

The Relaxed Scoreboard is a verification methodology
that attempts to come as close as possible to verifying
the temporal behavior of a CMP memory system imple-
mentation, while avoiding exponential complexity. Like a
traditional scoreboard, the relaxed scoreboard is constructed



to be an intuitive and simplified temporal model of the
memory system, but like TSOtool, it is not tied to a specific
implementation. The decoupling of the relaxed scoreboard
from the implementation is done, similar to earlier work by
Saha et al [3], by having a set of multiple possible values
associated with each memory location. This set includes all
values that could possibly be legally read from this address
by any processor in the system.

We find that by using this relaxation (keeping a set of
possibly correct answers), a relaxed scoreboard methodology
introduces a number of traits that are important for effi-
cient RTL design and verification. The construction of the
scoreboard is derived directly from the relevant consistency
model properties. Each of those properties can be considered
separately, therefore enabling the verification environment to
be developed incrementally along with the design, rather than
requiring a complete model on day one. In contrast to static
post-mortem trace analysis algorithms, the relaxed scoreboard
is designed to be a dynamic on-the-fly checker, meaning
that any error will be reported immediately, saving valuable
human and compute time. Furthermore, the combination of
dynamic runtime analysis plus the scoreboard’s incremental
construction enables the user, at later design phases, to
incorporate key information from the design (such as exact
arbitration time) into the scoreboard. While at the beginning
of the design/verification cycle the number of acceptable
results might be large, this set can become smaller as more
sophisticated checks are added to the scoreboard, and can, if
needed, turn into a tight, accurate model.

To understand where the relaxed scoreboard fits into a
validation methodology, the next section quickly reviews
modern validation approaches, and describes recent work
upon which our solution is built. With this background, Sec-
tion 3 formally describes two different memory consistency
problems: verifying sequential consistency both with and
without temporal information about the memory operations.
Section 4 then describes the basic approach for creating a
relaxed scoreboard, and demonstrates how it can be used to
address the consistency problems described in the Section 3.
Since validating memory consistency is NP complete and our
scoreboard runs in polynomial time, Section 4 also describes
the type of errors that can escape our checker. Section 5
extends the discussion to a real design example, where
relaxed scoreboards were used to verify the implementation
of an actual CMP design, the Stanford Smart Memories,
for both Relaxed Consistency and Transactional Coherency
and Consistency (TCC). Section 5 also provides information
on both the effectiveness and overheads of using a relaxed
scoreboard to validate the memory system.

2. Prior Work

Over the years, academia and industry have developed
many RTL verification methodologies, which are today com-
monly employed among ASIC design groups. A number of
books such as [4], [5] and [6] will guide the reader through
the process of forming and implementing a verification plan.
The verification goal is always to find as many errors as
possible, as early in the design cycle as possible, and with as
few resources spent as possible.

Functionally verifying an RTL design starts with a test-
bench which exercises the design under test (DUT) by stim-
ulating its input signals. Industry tools such as OpenVera [7]
or Specman [8] are used to generate, drive and monitor
design interfaces, verifying the behavior of internal and
output signals. Common approaches for increasing testbench
effectiveness include employing assertions [9] [10], high
level modeling, and comparison with “golden models” (or
verification “scoreboards”).

A verification scoreboard is a component that behaves as a
perfect reference model of the DUT, allowing an accurate
comparison between the implementation’s output and the
expected functionality. Scoreboards are often written in higher
level functional languages such as C, Vera or ’e’. The strength
of a traditional scoreboard comes from its ability, as an end-
to-end checker, to specify the correct output of the design at
any time. Having such a reference model means that one can
check the behavior of the system against any input pattern,
which facilitates using random test generation in addition
to self checking diagnostics. Random test input significantly
improves the probability of hitting corner case errors in
the design. Unfortunately, since in a shared memory system
the detailed timing of the operations determines the output,
creating a golden model and proving its correctness becomes
an extremely difficult task.

Similarly to RTL scoreboards, Meixner and Sorin devel-
oped validation techniques for dynamic detection and recov-
ery of consistency violations in a memory system [11] [12].
However, these studies rely on sufficient conditions for se-
quential consistency and therefore also produce false pos-
itives which are highly undesirable in an RTL verification
environment. On the other side of the spectrum, much work
has been done to formally prove that a hardware protocol
really implements the memory consistency model for which
it was designed. Methods such as a Cartesian product of
Finite State Machines [13] [14], formal specification with
Model Checking [15] [16] [17], and Lamport clocks [18] [19]
are often used. However, the state space of an RTL imple-
mentation is very large, and formal methods can rarely be
applied to it at system level. One way to address the additional
complexity RTL introduces over its specification is to extract
internal information from the RTL design. Serdar, Yuan and
Brannon used a refinement map to transform simulation steps



in an implementation to state transitions at the specification
level [20]. Lepak used exact time stamps of store-commit
and of load-bound-to-value to verify sequential consistency
in a software simulation environment [21]. The shortcomings
of relying on the design’s internal details are that it couples
the checker with the implementation, and that in many RTL
designs, in contrast to software simulators, extracting exact
protocol state may not be practical.

In addition, protocols are often defined mathemati-
cally using non-deterministic automata. The inherent non-
determinism implies that when implemented in RTL, multiple
correct designs may exist, each of which may produce dif-
ferent traces of execution. Consequently, a traditional golden
model for one implementation cannot be used for a different
implementation. Therefore, a more robust solution is needed,
one that encapsulates the non-determinism of the protocol,
and hence can be used to verify different implementations of
the protocol. One good example is the TSOtool [2], a suite
of post-mortem algorithms for trace analysis, which checks
that a CMP implementation complies with the Total Store
Ordering consistency model. Similar work has been done to
verify TCC implementations [22].

We realize we can build on the work of [2] and [22],
to create a new approach to scoreboard design that makes
the construction of a memory scoreboard easy. Thus one
gets the advantages of the ability to verify portions of the
model early-on, and dynamically add, adjust and remove
protocol restrictions (or axioms) later in the process, as well
as performing the checking at real time, without generating
long trace files.

Most importantly, in comparison to a TSOtool-like checker
which strives to verify existence of a logical order of opera-
tions based on the consistency model, the relaxed scoreboard
strives to verify existence of a temporal order of operations.
The latter is a stronger condition because all temporal orders
are also logical order, but not vice-versa, as we show in
the next section.

The idea of a memory system checker that holds “valid
sets” for the purpose of decoupling the checker from the im-
plementation was first introduced by Saha et al [3]. We extend
this idea to a complete framework, the relaxed scoreboard,
and use it to verify multiple consistency models on a real
CMP RTL implementation. We also show both an analytical
analysis and experimental results regarding the effectiveness
and overhead of using this methodology. Finally, while the
concept of valid sets as presented by [3] proves useful, it
can not catch all errors since the problem of verifying an
execution trace of a multiprocessor is NP-Complete (see
Section 3). Therefore, this paper also adds an analysis of
the completeness of the checker and suggests improvements.

3. Problem Definition

Verification of a shared memory system is in essence
the attempt to prove that the hardware complies with the
mathematical definition of the coherence and consistency
model from a programmer standpoint. For example, deciding
whether a set of processor execution traces complies with
sequential consistency is known as Verifying Sequential Con-
sistency (VSC) [23]. Similar definitions apply for other con-
sistency models [24]. When dealing with RTL/architectural
verification, as opposed to post silicon verification, an at-
tractive verification approach is to leverage not only the
values observed on the system’s ports, but also their temporal
information—the time at which they were observed. By using
temporal information, a checker can also flag errors that
obey the consistency model but should not occur in real
hardware. The temporal version of VSC is known as Verifying
Linearizability (VL) or Atomic Consistency [25].

The following are the formal definitions of Verifying
Sequential Consistency and Verifying Linearizability, as de-
scribed by Gibbons and Korach [25]. Verifying Sequential
Consistency is based on respecting program orders and the
read/write semantics, while ignoring start-of-interval and end-
of-interval times.

INSTANCE: Variable set A, value set D, finite collec-
tion of sequences S1, ..., Sp, each consisting of a finite
set of memory operations of the form “read(a, d)” or
“write(a, d)”, where a ∈ A and d ∈ D.
QUESTION: Is there a sequence S, an interleaving of
S1, ..., Sp such that for each read(a, d) in S there is a
preceding write(a, d) in S with no other write(a, d′)
between the two?

Verifying Linearizability adds the further constraint that the
schedule S must respect the time intervals for the operations.

INSTANCE: Variable set A, value set D, finite collection
of sequences S1, ..., Sp, each consisting of a finite set of
memory operations of the form “read(a, d, t1, t2)” or
“write(a, d, t1, t2)”, where a ∈ A and d ∈ D, and t1
and t2 are positive rationals, t1 < t2, defining an interval
of time such that all intervals in an individual sequence
are pairwise disjoint, and t1 and t2 are unique rationals
in the overall instance.
QUESTION: Is there an assignment of a distinct time
to each operation such that 1) each time is within
the interval associated with the operation; 2) for each
read(a, d, τ1, τ2), there is a write(a, d, t1, t2) assigned
an earlier time, with no other write(a, d′, t′1, t′2) assigned
a time between the two?

Similar definitions can be applied to other consistency models
such as Total Store Order, Weak Ordering, etc. One should
note that in practice, most CMP architectures would allow
non-blocking writes, and even multiple outstanding reads.
This means that a black-box verification environment will
not have the end-of-interval time stamp for write operations,



and that all operations may not be pairwise disjoint. The
practical implication is that a checker may need to keep
track of more than P concurrent accesses, where P is the
number of processors in the system. One such architecture
is the Stanford Smart Memories [26], on which the relaxed
scoreboard was evaluated.

Gibbons and Korach proved that VSC is NP-
Complete [25]. Cantin, Lipasti and Smith extended the
proof to all other commonly used consistency models [24].
Moreover, the problem is NPC even when any of address-
range/number-of-processors/accesses-per-processor factors
is bounded. Although VL was also shown to be an NPC
problem, the limiting factor for VL is the number of
processors that are accessing a shared address, rather than
the length of the trace.

To conclude the formal definitions of VSC and VL, we
argue that for the purpose of hardware verification, VL is a
stronger correctness criteria since any set of traces that would
violate a checker for VSC will also violate a checker for
VL. Furthermore, there can be traces with errors that violate
VL but do not violate VSC. The following set of temporal
sequences demonstrates such a scenario.

Time S1 S2 S3
10 A:RD(a,5,10,11) D:WR(a,1,10,11) G:WR(a,2,10,11)
20 B:RD(a,5,20,21) E:WR(a,3,20,21) H:WR(a,4,20,21)
30 C:RD(a,5,30,31) F:WR(a,5,30,31) I:WR(a,6,30,31)

* Assume MEM[a]=0 at time 0
** This example illustrates a ’stuck-at’ error case

In this counterexample one can easily find a global ordering
that complies with SC (E.g.,{G,H,I,D,E,F,A,B,C}) . However,
no ordering can be found that complies with VL. This implies
that a checker with temporal information will find more
error cases than a post-mortem checker without temporal
information. The latter might not find errors that violate
causality as in this example. Section 4.1 will show another
example of a property violation (write atomicity) that can only
be found by a checker that leverages temporal information.

4. Relaxed Scoreboard

To verify the linearizability of a CMP implementation, the
Relaxed Scoreboard is built as a global online design checker.
As noted before, the relaxed scoreboard does not compare an
observed value to a single known correct result. Instead, it
keeps a set of possible results and ensures that the observed
value is within this bounded set. It is an oracle that can
answer the following question: “Does the value Val, that was
observed at interface ifc of the design, exist in the group of
allowed values for that interface, at that given time?” In this
sense, the relaxed scoreboard is simply a data structure of
groups, which can answer queries and receive updates.

In order to understand why a single value might be hard to
predict but a bounded set is not, one can think about a simple

Figure 1. Non-determinism of a CMP memory system.

4-input round-robin arbiter. In order to predict who would
win the arbitration, a golden model would have to “know” or
imitate the internal state of the arbiter. In contrast, in order to
determine the set of possible winners, a relaxed scoreboard
only needs to know which inputs are asserting a request and
which inputs have already been granted (in previous rounds).
It would then perform simple accounting operations to keep
the set of possible winners as tight as possible. Note that in
addition to simply checking the DUT outputs, the scoreboard
uses those outputs to reduce the allowable future outputs.

Verification of a memory system in a shared memory
multiprocessor is particularly challenging because of the in-
herently non-deterministic and timing-dependent execution of
memory accesses, which inevitably produces race conditions.
The sequence of memory accesses from each processor might
depend on how the previous race condition was resolved.
Figure 1 shows a simple example of a race condition in a
four-processor system. Processors 1, 2 and 3 are initiating
writes to address a while processor 4 is reading the value
saved at that address. The data is returned some time after
the load started, as noted by the curved arrow. Depending on
the exact arbitration mechanism, each of the values 1, 2 or 3
might be returned as the result of the load instruction.

In order for the relaxed scoreboard to be an efficient
verification tool, we define two requirements:

1) Bounded Uncertainty: The set of possibly correct an-
swers must be kept bounded. If this set grows in
time, then the testbench as a whole loses efficiency.
This is the most important requirement of the relaxed
scoreboard.

2) On-The-Fly: Errors should be detected on-the-fly, as
close as possible (in time) to their origin. Since the re-
laxed scoreboard is designed with big, complex designs
in mind, it must recognize the need of both designers
and verification engineers for a fast turnaround time.

Though not a requirement, it is recommended that one
use a black-box approach, at least in the early part of the
design-verification cycle. The reason is twofold: (a) The more
information that the scoreboard is using from the design,
the more likely it is to repeat (and therefore mask) the
same errors. (b) The more internal signals and states that
the scoreboard is using from the design, the more dependent
it becomes on the specific implementation. To be a black



box checker, the relaxed scoreboard should be connected
to the interface of the DUT through monitors that observe
the signals from the implementation and send higher level
abstraction messages to the checker. Once the design matures,
and gross errors are flushed out, it may be desirable to
incorporate key information (such as arbitration time or snoop
messages) to tighten the matching between the scoreboard and
the actual design.

To meet the above requirements efficiently, the relaxed
scoreboard implementation uses an internal, easily searchable
data structure. The main purpose of the scoreboard’s internal
data structure is to keep a set of possibly correct values,
sorted by address and chronological time. Each entry in the
scoreboard’s data structure is associated with a sender ID,
value, and start and end time stamps, as observed during
runtime on the relevant processor interface. In addition, each
entry contains a set of expiration times, one for each possible
interface on which this transaction may be observed. Upon
arrival of a new transaction from a monitor, the scoreboard
performs a series of checks followed by a series of updates.
The checks produce the scoreboard’s oracle answer, based
on the values stored in the data structure, of whether that
operation is possible. The updates use the DUT output to
update the internal data structure with the new information,
reducing the set of answers that the scoreboard considers as
correct for future operations.

Updates reduce the set of possible values held in the data
structure, but the scoreboard can perform simple checks even
before any updates are added. For example, the most useful
check is a check of causality (a value that is read from an
address must have been previously written to that address).
In this very loose scoreboard, any stored value would be
considered as correct. Under such a simple scoreboard, the
check would quickly become ineffective and the data structure
would explode in size. Thus, updates are the completing and
crucial part of the scoreboard. Updates use the rules of the
implemented protocol to reduce the set of possible values,
keeping it up to date with the values exercised by the DUT.

Updates and checks can operate independently, so new
checks and updates can be added to verify different aspects
of the specification, or existing checks and updates can be
made more effective by considering more details of the im-
plemented system. This characteristic allows the verification
effort to concentrate on the simplest and easiest to detect
errors first, and gradually move towards more sophisticated
design problems. This implies that while at the beginning
of the design and verification cycle the number of acceptable
results might be large, this set later becomes smaller, evolving
towards a tight, accurate model.

Overall, the relaxed scoreboard is essentially a set of global
protocol-level assertions. The assertions are constructed to
verify that certain rules of the protocol are followed at a
high level, without actually relying on or examining the

Figure 2. Write atomicity example.

implementation details.
Sections 4.1 - 4.3 show a few examples to demonstrate the

use of the relaxed scoreboard in verifying implementations
of shared-memory protocols. In the examples, write(a,d) and
read(a,d) are used respectively to denote a write or a read
of data d from address a. To make the consistency problems
easier to see in these examples, reads are assumed to complete
in less than 10 cycles, and nops indicate operations that are
not relevant for the property in question.

4.1. Write Atomicity

As a run-time checker, the scoreboard needs to determine
whether a given operation corresponds to a legal transition in
the machine state. As our first example, let us examine how a
relaxed scoreboard would check for write atomicity, which is
part of many consistency models [27]. In order to detect write
atomicity violations, we convert the protocol property into a
check and update, and add them to the relaxed scoreboard:

PROTOCOL PROPERTY: All processors see writes to the
same location in the same order: single serialization point.
If there is a store that is observed by one processor, it
should be observed as completed by all processors.
UPDATE: When one processors loads a value from a
certain location, mark all previously committed stores to
this location as invalid after the load time.
CHECK: A load can only return a value which was valid
at some point between its start-of-interval and end-of-
interval

The following is an observable write atomicity violation:

Time P1 P2 P3 P4 P5
10 WR(a,1) WR(a,2) nop nop nop
20 nop nop RD(a,1) nop nop
30 nop nop nop RD(a,2) nop
40 nop nop nop nop RD(a,1)

* Assume MEM[a]=0 at time 0
** Assume read operations complete in less than 10 cycles



In this example, Processors 3, 4, and 5 disagree on the
ordering of the store to address a. Figure 2 illustrates
the operation of the relaxed scoreboard for the above code
sequence. The top part shows portions of the specification’s
non-deterministic state machine that correspond to the code
above. It shows that one of two sequences can exist: either P1
wrote 1 and then P2 wrote 2 or vice versa—write atomicity
is maintained in both cases. The portion of the figure that is
drawn in bold illustrates the corresponding implementation’s
state machine (which is deterministic). The bottom part of the
figure shows the state of the relaxed scoreboard with respect
to the same code: The scoreboard identifies two writes and
marks both values as possible answers. This corresponds to
the state machine being in either state Init, A, B, C or
D. When the first read is reported to the scoreboard, the
scoreboard deduces that the design can be in either state
A, B or D, and when the second read is reported, the
uncertainty window collapses to a single allowed value. In
this example, the scoreboard will immediately identify the
read by processor 5 as an error since the returned value is
no longer in its list of allowed values for that address. It is
important to note that a trace analysis checker that does not
use temporal information will not identify this set of traces
as erroneous. Without the time information, the read by P5
could be assumed to have taken place before the read by P4.

4.2. Transaction Isolation in TCC Memory Model

To provide another example of how to convert protocol
rules into checks and updates we examine Transactional
Memory. Transactional coherence and consistency (TCC) is
a memory model that has been proposed to simplify the
development of parallel software [1]. In TCC, the program-
mer annotates the code with start/end transaction commands,
and the hardware executes all instructions between these
commands as a single atomic operation. If a transaction con-
flict is detected, such as one transaction updating a memory
word read by another, the latter transaction is considered as
violating and must be re-executed.

In order to track the state of a TCC system, the relaxed
scoreboard must be able to determine when transactions
begin, commit or abort. Fortunately, as part of the software-
hardware contract, the timing of these events is determined
by a TCC runtime system using special marker instructions
to signal the state of a particular processor and transaction.
The relaxed scoreboard can use this information for its own
operation. The scoreboard’s data structure also needs the
ability to keep track of multiple transactions simultaneously;
all written values must be kept and associated with their
initiating processor until the time of commit. Similar to the
example discussed in Section 4.1, the scoreboard does not
need to know the exact timing of the events in order to check
for end-to-end properties. For example, the scoreboard does

Figure 3. Total Store Order example.

not know when a store becomes visible to other processors;
it assumes that it happens sometime during commit.

The Transaction Isolation property means that when a
processor is executing a transaction, the transaction’s inter-
mediate state is hidden from other processors in the system.
They can only observe the transaction’s state before a trans-
action start or after a transaction commit. As in the previous
example, in order for the relaxed scoreboard to check for
transaction isolation, we convert the protocol property into
an update:

PROTOCOL PROPERTY: A transactional store cannot be
observed by other processors unless the transaction com-
mits successfully.
UPDATE: When a store is issued during a TCC transac-
tion, leave it as invalid for all but the issuing processor.
Upon observing transaction commit, validate it for other
processors as of commit time.
CHECK: A load can only return a value which was valid
at some point between its start-of-interval and end-of-
interval

The following sequence is an example of a violation of
transaction isolation property:

Time P1 P2
10 START TRANSACTION START TRANSACTION
20 WR(a,1) nop
30 nop RD(a,1)
40 START COMMIT

* Assume MEM[a]=0 at time 0
** Assume read operations complete in less than 10 cycles

In this example, the scoreboard would not allow the value
1 for P2’s load, as it has not observed the commit event from
P1. Thus on P2’s load it would raise an error.

4.3. Store Ordering in a TSO Memory System

A design that implements Total Store Ordering (TSO)
ensures that all stores from a processor complete in program
order, as seen by all processors (this is different from weak
consistency, which makes no guarantees about the ordering



of stores to different addresses). To facilitate verification of
store ordering, we add another update to the scoreboard:

PROTOCOL PROPERTY: All stores by a processor must
commit in issuing order, as seen by all processors
UPDATE: When a store by processor Pi is observed by a
processor’s load, all previous stores by Pi to all addresses
should be marked as committed. If more than one store by
Pi exists for a given address, mark the latest as commited,
and invalidate older ones.

To analyze the scoreboard actions when used for TSO,
consider the following example of a TSO violation:

Time P1 P2
10 WR(a,1) nop
20 WR(a,2) nop
30 WR(b,2) nop
40 nop RD(b,2)
50 nop RD(a,1)

* Assume MEM[a]=MEM[b]=0 at time 0
** Assume read operations complete in less than 10 cycles

Figure 3 illustrates the operation of the relaxed scoreboard
for the above code sequence. The top part shows the change
in state of the machine given the TSO memory model. The
relaxed scoreboard cannot deduce the exact state, but it can
deduce a set of possibly correct values, as illustrated in the
bottom part of the figure. By observing the three writes one
can deduce that the state is Init, A, B or C. When the first
read is reported to the scoreboard, the design can only be
in state C, therefore the uncertainty window collapses to a
single allowed value. Finally, as the second read by processor
2 is observed, the scoreboard will immediately identify it as
an error since the returned value is no longer in its list of
allowed values.

The three previous examples showed how it is possible
to write simple updates and checks for the scoreboard to
verify different aspects of memory implementations1. In
the following two sections, we analyze the complexity and
completeness of this methodology.

4.4. Algorithm Complexity

In addition to the simulation length and the number of
active processors, two main factors determine the computa-
tional complexity of the scoreboard. The first is the number
of addresses used during simulation. A smaller address range
can increase the chance of race conditions (increases the
uncertainty), and on the other hand, a wide address range
may increase the amount of relevant dependent operations.
The second factor is the latency of operations. Long latency
stalls (e.g. due to cache misses) can increase the uncertainty
regarding the possible returned values for a given load op-
eration. While sparse and bounded address ranges can not

1. The interested reader can find more implementation details at http://
www-vlsi.stanford.edu/smart memories/RSB/index.html

co-exist, long latency stalls constitute the majority of the
complexity. In fact, these are the “interesting” cases in the
system since these cases imply that the system is performing
some arbitration and synchronization.

Assume that a specific run contains N instructions from P
processors thus resulting in O(N ·P ) calls to the scoreboard.
Each loaded value must be compared to O(C · P ) values
(check phase) and then update O(C ·P ) values (update phase),
where C is a constant property of the system and represents
an upper bound for the number of possible outstanding
operations per processors. In the worst case, the property C
does not exist (i.e. C == N ), and thus the total complexity
of the algorithm described is O(N 2 · P 2). However, in
practical systems, one can put an upper bound on outstanding
operations, or at least an upper bound on the time it takes to
complete an operation. Using this upper bound as one of the
update rules, the scoreboard can collapse old unused data sets,
thus significantly reducing the runtime and memory footprint.
The complexity is reduced to O(N · C · P 2).

4.5. Algorithm Completeness

The problem of Verifying Linearizability is an NPC prob-
lem with respect to the number of processors in the system
P (i.e., there is an algorithm which is polynomial to the
address range and to the length of the trace, but not to P ).
However, the relaxed scoreboard as described thus far, is a
polynomial time checker, implying that it is not complete. A
checker of a consistency model is considered complete if it
can completely prove or disprove any set of traces to comply
with the relevant consistency model. For example, the first
version of the TSOtool was an incomplete checker, since it
could not identify all erroneous traces [2]. A later study by
the authors improved the algorithm to be complete [28].

The reason the relaxed scoreboard is not complete is it
never revisits a previous decision it has made. This can
be a problem when, as happens in real systems, reads can
overlap and complete in varying amount of time. We give
an example to demonstrate this case, in which loads are no
longer assumed to complete in less than 10 cycles: P1 reads
the value 2, which implies that 2 was committed, and should
be visible to all processors at cycle 40. P3 starts a read at
cycle 50, and the value returned is 3, which implies that the
write of value 3 committed after the write of 2. This, in turn,
implies that the read by P2 (which happens after the store of
value 3 to maintain program order by P2) must not return the
value 1 (it should return 3). Yet, since the start time-stamp
of P2’s read is set at a time for which the value 1 may have
been valid, a relaxed scoreboard will not flag it as error.



Time P1 P2 P3
10 WR(a,1) WR(a,3) nop
20 WR(a,2) RD(a) nop
30 RD(a) stalled nop
40 →2 stalled nop
50 nop stalled RD(a)
60 nop stalled →3
70 nop stalled nop
80 nop →1 nop

* Assume MEM[a]=0 at time 0
** Assume the system maintains write atomicity

The example demonstrates a case in which the information
at cycle 60 (the returned value 3 to P3) has implications on
the temporal information and order of events that were seen in
previous cycles (i.e., the write of value 3 must have committed
after the beginning of the read by P1, and consequently so
did the read by P2).

In order to fully account for cases in which later infor-
mation impacts the validity of already verified loads, the
scoreboard would have to roll back and rerun portions of
the checks and updates. The number of reruns may (in worst
case) be an exponential function of the number of processors
that interact. However, empirical results, based on random
test patterns, show that less then 0.05% of transactions are
hazards for this type of rollback scenario2.

To completely verify linearizability of a system, three
possible extensions are suggested:

1) Enable rollbacks: Enable the scoreboard to rollback,
and redo portions of checks and updates based on
new information. Potentially, this may slow down the
simulation. While the worst case is NP with respect
to the number of processors, for practical systems it is
unlikely to be this bad.

2) Complementary post mortem check: Use the relaxed
scoreboard as a partial checker, but complement it with
a complete post-mortem (exponential time) checker
such as the one described by Gibbons and Korach [25].
However, this would require dumping the huge traces
and their temporal information.

3) Turn to “white box”: Since the scoreboard enables in-
cremental additions, once the design is mature enough,
key information can be used to better determine the
time in which instructions committed.

One should also note that the relaxed scoreboard can be
used to verify a subset of the consistency model properties
(thus obviously incomplete). Our experience shows that even
in those cases where not all axioms are translated into checks
and updates, it was useful in finding elusive bugs that could
not have been found using race-free or self-checking test
vectors. The next section describes the results of using the
relaxed scoreboard to verify several memory models.

2. The scenario depicted here is the only type of undetected error that we
could find in order to prove incompleteness. However, there may be other
scenarios for which a relaxed scoreboard may fail to identify an error.

Figure 4. Smart Memories Configurable Architecture.

5. Evaluation

We applied the relaxed scoreboard to the verification of
the Stanford Smart Memories chip multiprocessor archi-
tecture [26] and evaluated its effectiveness based on the
number and complexity of the design errors that it could
reveal, in addition to the impact that it had on the overall
verification/simulation environment.

5.1. Scoreboard Design for Smart Memories

Smart Memories is a modular, reconfigurable multiproces-
sor architecture that supports multiple programming models,
including conventional shared memory with cache coherency
(CC), stream programming [29] and transactional memory
(TCC) [1]. The system consists of Tiles, each with two simple
VLIW cores, a number of reconfigurable memory blocks, and
a crossbar that connects them to each other and to the outside
world. Tiles are grouped together to form Quads. Each Quad
has a configurable protocol controller with a generic network
interface for communicating with the rest of the system.
Quads are connected via a mesh-like network, which also
connects them to memory controllers and off-chip memories.
Figure 4 shows a block diagram of the architecture.

When configured as a shared memory CMP, the Smart
Memories system implements a hierarchical version of the
MESI protocol. The shared memory consistency model [27]
is a variation of Weak Ordering (WO), which maintains write
atomicity. Processors are allowed to issue non-blocking writes
to memory, which can be overlapped and completed out
of program order. On the other hand, reads are treated as
blocking operations and stall the processor until the data is re-
turned. When configured as a transactional memory CMP, the
Smart Memories system implements the TCC protocol [1],
briefly described in Section 4.2.

A relaxed scoreboard was used to help verify the design.
It was implemented as an object oriented programming class
using OpenVera. Vera’s Aspect Oriented Programming (AOP)
capability was leveraged to connect the scoreboard into the
existing verification environment, which already included
code to monitor key interfaces. For cache coherency, the
scoreboard’s data structure contained an associative array
of queues, one queue per writable address in the system.



For TCC, the scoreboard also maintained a queue for each
processor, containing pointers to the transaction’s read and
write sets, and flags to indicate the state of the current
transaction. Checks and updates, a superset of those shown
in Sections 4.1 and 4.2, were written based on the protocol
rules of [27] and [1] respectively3.

Due to the scoreboard’s black-box nature, it was usable
without modification across 25 different cache-coherent con-
figurations and 15 different TCC configurations. Moreover,
it was applied to both single-quad (8 processors) and four-
quad (32 processors) testing environments, where the only
difference was the number of monitor instances that fed the
scoreboard with information.

In order to further demonstrate the flexibility of the system,
we also configured the scoreboard to check for Total Store
Ordering. This required writing a single new update for the
scoreboard, only 100 lines of Vera code. While this initial
version was correct, the data structure was rather inefficient,
so we also introduced a second lightweight data structure to
track outstanding stores and a short update to populate it.

5.2. Quality of Results

We evaluate different verification methodologies by consid-
ering the complexity of the design errors each can reveal, as
well as the cost of applying them. This cost can be measured
in terms of both the overheads incurred when simulating the
DUT, and the difficulty of integrating the methodology into
the verification environment. Table 1 compares and contrasts
the relaxed scoreboard with other memory system verification
schemes across a number of dimensions. For comparison
purposes, all schemes were considered as if implemented for
sequential consistency, and bold text is used to indicate the
most desired value.

To demonstrate error cases that can be revealed by using a
relaxed scoreboard, Table 2 summarizes classes of errors that
the relaxed scoreboard found in the Stanford Smart Memories
design. One should note that the errors described in Table 2
were found after multiple runs of self checking diagnostic
tests were used to identify “simple” errors.

Given the complexity of the errors described in Table 2,
and the fact that some of the errors would have evaded
previous verification methodologies, we found the relaxed
scoreboard to be a useful debugging tool and another weapon
in the arsenal against memory system errors. Using the
scoreboard simplified test generation, as tests no longer had
to be entirely self-checking. This allowed the test suite to
include truly random tests, where before it was limited to
tests with only false sharing or strictly synchronized accesses
between processors. The random tests revealed subtle bugs,

3. The source code of the relaxed scoreboard implementation for Smart
Memories can be found at http://www-vlsi.stanford.edu/smart memories/
RSB/index.html

such as erroneous ordering of back-to-back stores to the same
address. Moreover, the efficiency of the self-checking tests
increased because the relaxed scoreboard was able to detect
intermediate errors, even when the final output was correct.

For Cache Coherence we were able to detect many prob-
lems related to memory ordering and corruption. These errors
existed in many parts of the design: the Cache Controller,
Load Store Unit, Memory Controller, and in configuration of
our programmable hardware. In the TCC mode, the score-
board was able to detect errors such as faulty commits and
violations. These included a very subtle case where a transac-
tion violated unnecessarily due to an error in the manipulation
of state bits. Since this was a performance error, it would
have otherwise remained undetected by any self checking test.
Another type of error that the scoreboard detected in TCC
mode was runtime sequencing problems (software library
errors). These included cases in which two start transaction
markers were observed without an end/violate transaction
marker in between.

Some transactional memory proposals include more ad-
vanced features which are not supported by the Smart Mem-
ories hardware used to benchmark the relaxed scoreboard.
Future work in this area can include extending the relaxed
scoreboard checks/updates to test commit handlers, nested
transactions, etc.

As was mentioned in Section 4, we were pleased that
the same basic approach served to validate very different
memory system models, as well as different implementations
of each model. This generality was enabled by the flexible
and incremental addition of checks and updates

5.3. Performance and Overheads

Several hundred diagnostic, application and constraint ran-
dom vector generators were used to generate memory trans-
actions for the verification of the Smart Memories design.
For the analysis shown here we concentrate on a subset
shown in Tables 3 and 4, which comprise over half a billion
memory accesses. All simulations were performed on the
same machine specification: A 3.40GHz, 8GB RAM, Dual
Processor Intel Xeon, running CENTOS4.

We assessed the overhead related to the scoreboard’s
implementation as well as the overhead in simulation time
when activating it. As the most basic metric, we compared
the amount of code associated with the scoreboard to that
of the rest of the verification environment. It turned out to
be surprisingly small: the entire scoreboard code is about
3000 lines, which is less than 5% of the total of the Smart
Memories verification environment. Measuring simulation
time and memory footprint yield the results presented in
Tables 3 and 4. The numbers in the Time and Mem columns
represent the ratio of CPU runtime and memory footprint
(respectively) between the run with scoreboard to a run



Table 1. Qualitative comparison of the relaxed scoreboard methodology to other memory system validation schemes

Attribute Self checking tests Gold model TSOtool-like
(base) [2]

TSOtool-like
(complete) [28]

Relaxed
Scoreboard

Correctness Criteria VL (races avoided) VL VSC VSC VL
Completeness No Yes No Yes No
Algorithm Complexity NA NA Polynomial Exp. (worst case) Polynomial
On-The-Fly Capable No Yes No No Yes
Post-Mortem Capable Yes Yes Yes Yes Yes
Black Box / Reusablity No No Yes Yes Yes
Incremental Additions Yes No No No Yes

Table 2. Classes of errors found by the relaxed
scoreboard (LSU=Load-Store Unit; PC=Protocol

Controller; MC=Memory Controller; Net=Network)

Error Description Error Location
Cache Coherency and Consistency

Program order violation: processor writes new
value, then reads the old value from the same
address

LSU

Program order violation: later store value is over-
written by older store from the same processor

LSU

Soft processor stall doesn’t work LSU
Back-to-back loads from the same processor re-
turn different values

LSU

Coherence violation: load from a different proces-
sor returns zero instead of valid data

PC

Instruction fetch returns incorrect value LSU
Instruction fetch returns incorrect value Boot sequence
Load returns a no-longer valid data MC
Load returns incorrect data LSU
Load returns incorrect data MC
Load returns incorrect data PC
Load returns incorrect data Compiler
load returns X during boot/setup Boot sequence
Synchronized load returns incorrect data MC
Synchronized load returns incorrect data PC and PC config

Transactional Coherency and Consistency
START TRANSACTION command called twice TCC runtime
Missing COMMIT command TCC runtime
Unnecessary TCC violation PC
TCC coherent load returns stale data Net Config
TCC committed value is lost Net Config
TCC transaction is not violated, missed depen-
dence

PC

TCC coherent load returns wrong data PC

Table 3. Test Benches and Runtime Statistics on an 8
and 32-Processor system with CC.

Test Bench 8 CPUs 32 CPUs
# Time

ratio
Mem
ratio # Time

ratio
Mem
ratio

Fast Fourier
Transform 10.5M 1.29 1.86 52.5M 1.30 2.20

LU matrix de-
composition 30.7M 1.49 4.87 79.5M 1.19 3.00

Matrix
multiplication 18.3M 1.29 3.24 20.5M 1.33 2.56

Merge sort 6.2M 1.15 3.24 8.3M 1.08 2.19
Bitonic sort 19.6M 0.82 4.91 21.9M 1.24 2.58
Random* loads
and stores 0.25M 1.019 2.62 1M 1.03 5.33

* Random test and restricted address range to induce race conditions

Table 4. Test Benches and Runtime Statistics on an 8
and 32-Processor system with TCC.

Test Bench 8 CPUs 32 CPUs
# Time

ratio
Mem
ratio # Time

ratio
Mem
ratio

Fast Fourier
Transform 6.4M 1.24 4.04 20.2M 1.09 2.53

LU matrix de-
composition 19M 1.64 8.69 31.7M 1.53 4.97

mp3d 63.8M 1.2 1 109M 1.14 3.3
Flipper* 29M 1.21 1.86 31.2M 1.18 1.56
* Random test and restricted address range to induce race conditions

without the scoreboard. The # column denotes the number
of memory accesses, including all reads and writes that were
performed in each test, in byte granularity. The average
overhead measured in verifying cache coherency (Table 3)
was 19% in runtime and 201% in memory footprint. For
TCC (Table 4), the average overheads were 28% and 250%
respectively. These results show that the scoreboard runtime
overhead is reasonable, especially in light of the fact that
simulations are most likely to be deployed on multiple servers
as a regression suite, and should an error be found, the
relaxed scoreboard would immediately halt the simulation
and report it. The memory overhead is a consequence of
the relaxed scoreboard’s data structure, which holds a list of
timestamps and other information for every memory location
that the test uses. This overhead was hardly ever an issue,
and therefore no significant effort was made to improve
it. One can decrease the execution overheads by memory
management techniques, or by constructing the scoreboard
using a lower level programming language in place of Vera,
such as C or C++.

Finally, as mentioned in Section 4, a useful measure of
the effectiveness of the relaxed scoreboard is the size of the
set of possibly correct values (referred to as the uncertainty
window). Figure 5 shows the size of the uncertainty window
for several test-runs on 32 processors. Each subfigure shows
a histogram of the number of possibly allowed values for
every simulated load in the test. Figure 5.a shows that for
a random test, limited to 10 addresses for all 32 processors,
the average uncertainty is 35 values and never exceeds 81.
Figures 5.b and 5.c show that as there is less contention for



0 20 40 60 80 100
0

1

2

3

4

5

Number of Possibly Correct Values

P
er

ce
nt

ag
e 

of
 L

oa
ds

(a) Random Accesses to 10 Addresses

0 5 10 15 20
0

5

10

15

20

Number of Possibly Correct Values

P
er

ce
nt

ag
e 

of
 L

oa
ds

(b) Random Accesses to 100 Addresses

0 5 10 15 20
0

20

40

60

80

Number of Possibly Correct Values

P
er

ce
nt

ag
e 

of
 L

oa
ds

(c) Random Accesses to 1000 Addresses

0 5 10 15 20
0

20

40

60

80

100

Number of Possibly Correct Values

P
er

ce
nt

ag
e 

of
 L

oa
ds

(d) Matrix Multiply

Figure 5. Histograms of uncertainty for applications
running on 32 processors.

the addresses there is also less uncertainty. Figure 5.d shows
the results for a real application, in which there is very little
uncertainty, and the scoreboard only occasionally needs to
maintain more than one value.

One conclusion we draw from Figure 5 is that the size of
the set of possibly correct values is always bounded, even
when the test focuses on a very small address range. In fact,
for a self-checking diagnostic such as matrix multiplication
(Figure 5.d), a relaxed scoreboard behaves almost identically
to a golden reference model. In addition, it is important to
note how much more stressful a random test with true sharing
is (Figure 5.a) in comparison to a deterministic self-checking
diagnostic (Figure 5.d). The latter rarely induced any races.
This emphasizes the initial motivation for creating an end-to-
end reference model that can be used with random tests, for
a more efficient verification environment.

6. Conclusions

The advantages of having a scoreboard or a golden model
for validation are well known as are the difficulties of creating
this model. One approach to mitigate these difficulties is
to allow a degree of flexibility in the reference model.
Leveraging this flexibility and non-determinism to construct a
relaxed scoreboard—a reference model that tracks a tight set
of possible “right” answers and is therefore decoupled from
implementation decisions—greatly simplifies the construction
of the model. Since the possible set is almost always small,
it does not change its effectiveness in finding errors in the
design implementation.

This relaxed scoreboard creates the perfect framework for
building chip multiprocessor memory checkers, since one can
incrementally and almost directly convert memory ordering
or protocol properties into update rules for the scoreboard.
This allows one to create a scoreboard early in the design,

with little effort, and refine it as the design progresses. We
used it to validate a number of different memory models,
including TCC, in the Smart Memory verification effort, and
it was very effective in detecting errors in our design.

Compared to other memory validation methods, the relaxed
scoreboard combines the ease of use and the ability to
leverage timing information as in the traditional scoreboard,
with the implementation independence and ease of creation of
TSOTool [2]. This approach enables users to easily create a
memory system checker that is customized for their memory
model, runs concurrently with simulation, and yet remains
decoupled from the implementation details. Moreover, the
resulting checker can be made tighter than a checker for
logical correctness, since it can verify both logical (VSC)
and temporal (VL) correctness.
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