
Sparse Matrix-Vector Multiply on the HICAMP Architecture

John P. Stevenson
Stanford University

jpeter@stanford.edu

Amin Firoozshahian
HICAMP Systems

aminf13@hicampsystems.com

Alex Solomatnikov
HICAMP Systems

sols@hicampsystems.com

Mark Horowitz
Stanford University

horowitz@stanford.edu

David Cheriton
Stanford University

cheriton@stanford.edu

ABSTRACT
Sparse matrix-vector multiply (SpMV) is a critical task in
the inner loop of modern iterative linear system solvers and
exhibits very little data reuse. This low reuse means that its
performance is bounded by main-memory bandwidth. More-
over, the random patterns of indirection make it difficult to
achieve this bound. We present sparse matrix storage for-
mats based on deduplicated memory. These formats reduce
memory traffic during SpMV and thus show significantly
improved performance bounds: 90x better in the best case.
Additionally, we introduce a matrix format that inherently
exploits any amount of matrix symmetry and is at the same
time fully compatible with non-symmetric matrix code. Be-
cause of this, our method can concurrently operate on a
symmetric matrix without complicated work partitioning
schemes and without any thread synchronization or locking.
This approach takes advantage of growing processor caches,
but incurs an instruction count overhead. It is feasible to
overcome this issue by using specialized hardware as shown
by the recently proposed Hierarchical Immutable Content-
Addressable Memory Processor, or HICAMP architecture.

Categories and Subject Descriptors
G.1.3 [Numerical Linear Algebra]: Sparse, structured,
and very large systems—direct and iterative methods

Keywords
SpMV, Deduplication, HICAMP

1. INTRODUCTION
The ability to quickly invert a large sparse matrix is strongly

desired by many computing applications. In practice, this
reduces to finding the vector x which satisfies y = Ax, i.e.,
an explicit inverse is not computed. Direct approaches fac-
tor the matrix into upper and lower triangular components
and then do forward and back-substitution. The cost of the
direct approach can be amortized by solving several vectors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’12, June 25–29, 2012, San Servolo Island, Venice, Italy.
Copyright 2012 ACM 978-1-4503-1316-2/12/06 ...$10.00.

against the same matrix. Unfortunately, finding the ma-
trix factors can be quite costly, which motivates the use of
iterative approaches. Iterative approaches propose a trial
solution x0, calculate the residual r = y −Ax0, and update
the trial solution based on the residual. The process repeats
until the norm of the residual is brought to a satisfactorily
low value. Computing the matrix-vector product on each
pass comprises the bulk of the work in such a method. This
fact has motivated much research into optimizing the per-
formance of sparse matrix-vector multiply, or SpMV.

SpMV is typically limited by memory bandwidth because
there is very little data reuse. If the total size of the working
set exceeds the capacity of the last-level cache, the cache
is effectively rendered useless: each matrix value must be
brought in from DRAM, to be used exactly once, on each
pass through the SpMV kernel. Much effort has focused
on maximizing the attained bandwidth when using a ma-
trix representation such as compressed sparse row (CSR)
[3, 12, 19, 20, 22, 25], while relatively little work has focused
on reducing memory traffic [2,13–15,24]. Using current tech-
niques, SpMV execution time is set by the ratio of the work-
ing set size to the maximum sustainable memory bandwidth
of a given system [23]. This motivates research into new
methods that work around the bandwidth limitation.

This paper investigates one such method using matrix
formats based on fine-grained memory deduplication. Our
work is informed by the recently proposed Hierarchical Im-
mutable Content-Addressable Memory Processor, or the HI-
CAMP architecture [9]. The HICAMP architecture provides
improved concurrent programming semantics and reduces
the cost of inter-process communication by providing an in-
terface to a main memory that is snapshotted or versioned
on every update. To achieve this, without requiring an exor-
bitant amount of DRAM, HICAMP implements fine-grained
in-memory deduplication. Such a deduplicated memory is
useful in other domains as well: by introducing another level
of indirection, it enables large pages and fine-grained sharing
of page content in a virtualized server environment.

Such a memory suppresses duplicate zero values and thus
inherently provides sparsity oblivious hardware support for
compact representation of sparse matrices. Because some
aspects of the HICAMP architecture may prove useful in
fully realizing the potential of our method, we start by de-
scribing deduplicated memory and then briefly describe key
hardware components used by HICAMP. We then describe
several new matrix formats that rely on a deduplicated back-
ing store and investigate their storage efficiency. One such
format leverages the deduplicated memory to automatically

195

P1 P2 P3 P3

P6 P7

P4 0 0 P5

Zero Sub-Trees Eliminated
Duplicates Suppressed

€

v = x0 x1 x2 x3 0 0 0 0 0 0 0 0 x4 x5 x4 x5[]

x0 x1 x2 x3 x4 x5

Root Node

Figure 1: HICAMP DAG Storage: vector v is stored
in the leaf nodes of the DAG

detect symmetric matrix components and recursive patterns
of content. Our best compaction result is an improvement
of 5700x. These results encouraged us to implement a cus-
tom SpMV kernel that emulates the HICAMP data access
pattern while running on a standard x86/Linux server. Us-
ing this kernel, we achieve an average speedup of 1.5x and a
best-case speedup of 3.7x. We investigate the speedup and
our performance limits using profiling techniques. Through
this paper, we hope to provide insight to how a deduplicated
memory could be used in conjunction with certain hardware
components to further accelerate SpMV.

2. DEDUPLICATED MEMORY
The HICAMP architecture [8, 9] provides the abstraction

of a linear memory, but deduplicates memory content at a
fixed granularity that we refer to as a memory line. To
do this, a level of indirection is introduced. In particular,
a given linear array is stored in the leaf nodes of a directed
acyclic graph (DAG). The DAG itself is comprised of unique
and immutable memory lines. To provide efficient address-
ing of the fixed granularity memory lines, we use line ad-
dresses that we individually refer to as a physical line id
or PLID. To provide efficient reclamation, each PLID has
an affiliated reference count. Figure 1 shows an example of
some content (a sparse vector) mapped to a HICAMP DAG.

In Figure 1, the root node contains PLIDs 6 and 7. The
memory line containing content (values) x4 and x5 is re-
ferred to by PLID 3 and has a reference count of two. The
zero-valued PLIDs imply zero-valued subtrees. Although we
illustrate here using an internal node fanout of two, this con-
ceptual view of memory can use any branching factor. If all
leaf nodes were unique and non-zero, the DAG shown in
Figure 1 would be a fully balanced binary-tree. Using this
observation, we adopt the following convenient (if informal)
terminology for use in this paper: when necessary to specify
the branching factor, we describe a DAG such as that illus-
trated in Figure 1 as a binary-tree (or b-tree). We describe a
DAG with a branching factor of four as a quad-tree (q-tree)
and a DAG with a branching factor of eight as an oct-tree
(o-tree).

0 P2

non-zero non-zero

Internal	
 Node	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Replaced	
 With	

0 P1

P3 0

P4 0

Leaf	
 or	
 Internal	
 Node	

Without	
 Path	
 Compac8on	

non-zero non-zero

10010011 P4

Same	
 Leaf	
 or	
 Internal	
 Node	

Path	
 Compacted	

with	
 8	
 bit	
 pointer	
 (for	
 example)	

Path	
 Bits	

1:	
 	
 MSB	
 –	
 flags	
 path	
 compac8on	

0:	
 	
 unused	

0:	
 	
 unused	

1:	
 	
 path	
 stop	
 bit	

0:	
 	
 leI	

0:	
 	
 leI	

1:	
 	
 right	

1:	
 	
 right	

Figure 2: Path Compaction

Because sparse data is common, not just in linear algebra,
an optimization is used when internal DAG nodes become
underutilized. A path-compacted node replaces a sequence
of nodes containing only one PLID each by pointing directly
to the PLID at the end and by encoding the path through the
DAG. A path compaction is flagged by a single bit sacrificed
from the pointer space (example shown in Figure 2).

2.1 HICAMP Architecture
The HICAMP architecture provides hardware support for

efficient concurrency-safe access to shared data. Most re-
search has focused on the model of multiple threads access-
ing data within a single shared address space, but many
real applications use multiple separate processes with sep-
arate address spaces for fault-isolation and simplified syn-
chronization. HICAMP bridges this discrepancy and pro-
vides process-like shared data protection through snapshot
isolation and reduces the high cost of inter-process commu-
nication by allowing pointer sharing.

HICAMP translates load and store instructions into op-
erations on DAGs of unique and immutable memory lines.
The memory lines in the DAG, both internal and leaf, are
hardware protected and cannot be modified directly by soft-
ware. Instead, HICAMP provides a virtual segment table
that maps from software visible segment ids to the DAG
root nodes. The segment table provides the interface to
software and is somewhat analogous to a TLB.

When a thread begins to access memory referred to by a
segment id, it issues a command to hardware that accesses
the segment table and issues a reference count increment to
the DAG root node. This reference count increment guar-
antees that the root node, and by extension, any PLID or
leaf node referred to by the root node, will not be deallo-
cated or modified. Thus, the thread has a stable and isolated
snapshot of the memory content. The thread can modify its
view of the DAG, but changes are not globally visible until
committed by an update to the virtual segment table. Read-
write conflicts are thus eliminated and write-write conflicts
can be detected by compare-and-swap (CAS) against the
previous root node PLID. This enables snapshot and trans-
actional semantics for arbitrarily large regions of memory,
i.e. independent of cache size.

196

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

P1	
 0	
 P2	
 0	
 P3	
 P4	

A11	
 A22	
 A21	
 A12
T	

P9	
 P10	

€

1 0 6 8
0 2 5 7
6 5 3 0
8 7 0 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Figure 3: A Sparse Symmetric Matrix Mapped to
QTS Format

Although we cannot here fully describe all aspects of the
architecture, two specific hardware structures are relevant
to this paper: the HICAMP memory controller (provides
efficient deduplication of content) and the HICAMP iterator
register (provides efficient access to DAG leaf nodes).

2.2 HICAMP Memory Controller
The HICAMP memory controller provides an interface

to a content addressable memory that is backed by stan-
dard DRAM. To implement content lookup, the HICAMP
memory controller breaks the address space into hash buck-
ets and performs an efficient hash-based search. The HI-
CAMP memory controller provides two fundamental opera-
tions: lookup by content (returns a PLID) and read by PLID
(returns content). The PLID is comprised of the hash bucket
index and way number and can be directly converted to
a physical address. The HICAMP memory controller also
maintains the reference count for each line.

2.3 HICAMP Iterator Register
The HICAMP iterator register accepts load and store in-

structions from software as operations relative to some seg-
ment id. A load operation accepts an offset and traverses
from the graph root (found in the virtual segment table)
to the leaf specified by the offset. A store operation im-
plies the insertion (or replacement) of some content as a leaf
node. The iterator register issues a lookup to the memory
controller and then inserts the returned PLID as an internal
node in the DAG. This procedure of lookup-by-content and
node insertion continues until the DAG root node is replaced
with a new PLID.

As the name implies, the iterator register is meant to pro-
vide efficient iteration over leaf elements that are logically
contiguous, but actually scattered throughout memory. Be-
sides implementing DAG traversal in hardware, the iterator
register maintains a private cache of DAG elements along
the path from the root node to the currently referenced leaf
node to minimize memory accesses.

3. DEDUPLICATED MATRIX FORMATS
Using the memory structures described in Section 2, a

sparse matrix can be efficiently stored with implicit indices
(i.e., as if it were dense) because the DAG eliminates zero
valued sub-graphs. We call this a logically dense format.
A common approach to sparse matrix storage is to store a

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

P1	
 P2	
 P3	
 P4	

P5	
 P6	

€

1 0 6 8
0 2 5 7
6 5 3 0
8 7 0 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

€

1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

€

1 2 3 4 5 6 7 8 5 6 7 8[]

P7	
 P8	

P6	
 0	
 1100b	
 1100b	

P9	
 P10	

1111b	
 1111b	

Pa/ern	
 Matrix:	

Root	
 Node	
 (P9	
 ,	
 P10)	

Dense	
 List	

Figure 4: NZD Format using binary-tree and 8 bit
nodes

list of non-zero values along with arrays that indicate their
indices. We call this a compressed format when mapped
to a deduplicated memory. A hybrid of these two can be
employed – this approach is useful when a large amount of
non-zero pattern symmetry exists, but the non-zero values
themselves are unique. In this section, we describe the dedu-
plicated matrix formats that we studied. We begin with the
logically dense formats (RMA & QTS), then move to hybrid
(NZD), and then to compressed (HCSR & HCOO).

3.1 Row Major Array (RMA)
The most basic HICAMP matrix format is row major ar-

ray. This format logically stores every matrix value in row
major order; i.e., it is logically dense. Although lacking
in sophistication, this method achieves storage efficiency at
parity with the canonical CSR format (see Table 2).

3.2 Quad-Tree Symmetric (QTS)
Another logically dense format, quad-tree symmetric, di-

vides the matrix into four quadrants (A11, A12, A21, and
A22) and stores each in a separate sub-graph. When the
sub-matrix is on diagonal, the storage order is A11, A22,
A21, then AT

12. In this way, the QTS format automatically
exploits the duplicate content found in symmetric matri-
ces. Moreover, because it makes no special provision for
explicitly symmetric matrices, it automatically mines out
any amount of symmetry, i.e., even for non-symmetric ma-
trices. In Figure 3, we show an example mapping a small
symmetric matrix to a QTS encoded DAG.

3.3 Non-Zeros Dense (NZD)
The non-zeros dense format is a hybrid format that uses

two DAGs: one representing a sparse pattern matrix and
the other a dense vector. In NZD, the underlying non-zero
pattern is factored out as a pattern matrix in QTS form.
Because the pattern matrix leaf elements are logically only
one bit in size, 64 leaves can fit in the same space as one
double precision floating point value. The non-zero values
are then stored in a dense list ordered to correspond to the
QTS pattern matrix. In Figure 4, we show the NZD format
using the toy matrix from Figure 3.

197

€

1
1
1
2
2
2
3
3
3
4
4
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
3
4
2
3
4
1
2
3
1
2
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
6
8
2
5
7
6
5
3
8
7
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

€

1 0 6 8
0 2 5 7
6 5 3 0
8 7 0 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 3 tuples, columnar format
 (Row, Column, Value)

€

+

+

+

+

+

+

+

+

+

+

+

1
1
0
−3
0
0
−4
0
0
−3
0
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
+1 = 3
+1 = 4
+1 = 2
+1 = 3
+1 = 4
+1 =1
+1 = 2
+1 = 3
+1 =1
+1 = 2
+1 = 4

Δ Encode, Interleave & Store in DAG
 Store in DAG

€

+

+

+

+

+

+

+

+

+

+

+

1
0
0
1
0
0
1
0
0
1
0
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
=1
=1
= 2
= 2
= 2
= 3
= 3
= 3
= 4
= 4
= 4

€

1
6
8
2
5
7
6
5
3
8
7
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Figure 5: HCOO Format: Delta Encoding and In-
terleaving Scheme

3.4 HICAMP Compressed Sparse Row (HCSR)
The HICAMP compressed sparse row format maps a list of

non-zero values, a corresponding list of column indices, and a
shorter list that indicates the positions of row breaks in both
of the former lists to the leaf nodes of three separate DAGs.
As the name implies, this is a mapping of the canonical
compressed sparse row (CSR) format into a deduplicated
memory.

To enhance deduplication, the column indices and row
breaks are delta encoded. Delta encoding exposes more du-
plicate values where regular patterns exist. For example, the
sequence 1, 2, 3, 4, 10 becomes 1, 1, 1, 1, 6 when delta encoded
(note that the first value in the list is the seed value). The
same sequence can be delta encoded as 1, 0, 0, 0, 5 with an
assumed increment of one. Because the column indices are
often clustered in sequential order and because our method
favors zero values, we use an assumed increment of one when
delta encoding the column indices list.

3.5 HICAMP Coordinate Format (HCOO)
In the traditional coordinate format (COO), each non-zero

value is stored along with explicit matrix indices, i.e., as a
3-tuple: (row index, column index, non-zero value). In the
HCOO format, we first arrange the tuples in columns so that
we have a list of non-zero values, a list of row indices, and a
list of column indices. To enhance deduplication, we apply
delta encoding to the index lists (with an assumed increment
of one for column indices). Although the index lists are
logically the same length as the list of non-zero values, the
index list data elements are one half the width of the double
precision floating point values. Thus, we next interleave
the row and column indices so that we have only two lists,
each with the same number of bits. We then map these two
lists to the leaf nodes of two separate DAGs. We show this
delta encoding and interleaving scheme in Figure 5. The two
DAGs, thus obtained, are logically the same height – this,
by itself, is of no particular importance, but in our software
implementation it allows us to track the state of only one
DAG and thus reduce our overall instruction count.

3.6 Storage Bounds
Our deduplicated storage formats can achieve a high de-

gree of data compaction, but also provide reasonable bounds
in the worst case. Given an m by n matrix A, with nnz ran-
dom non-zero values, and pessimistically assuming that no
deduplication occurs for the row and column indices, we can
precisely compute the DAG overhead for the compressed
formats HCOO and HCSR using a geometric series:

total nodes =

 2 · num leaf nodes b–tree
4/3 · num leaf nodes q–tree
8/7 · num leaf nodes o–tree

(1)

For HCOO and HCSR the number of leaf nodes is O(nnz)
and thus the storage is no worse than O(nnz). For logically
dense formats, we assume that each non-zero costs one leaf
node and that each leaf costs log(m · n) total nodes. With
the understanding that n represents the longer dimension of
the matrix, the storage cost for a logically dense format is
no worse than O(nnz · log(n)).

4. CONCURRENT SYMMETRIC SPMV
Using matrix symmetry, traditional matrix storage for-

mats and SpMV kernels can save on storage and bandwidth
requirements by storing only the upper (or lower) half of the
matrix. The symmetric-CSR format keeps only the upper
half and thus achieves an immediate ∼2x storage advantage.

In concurrent SpMV, threads are normally assigned dis-
tinct matrix rows. This works well for non-symmetric CSR
SpMV because, for each thread, it preserves the property
of sequential access along a matrix row. More importantly,
this work partition assigns a disjoint write set to each thread,
and thus the threads can operate in complete independence
with no synchronization.

Unfortunately, this partitioning inhibits performance for
concurrent symmetric SpMV: because each thread now owns
both one row and one column of the matrix, each thread
can write to any value in the output vector. Thus, atomic
updates are required for every write operation and synchro-
nization overhead eliminates the benefit of parallelism.

The QTS format described in Section 3.2 neatly avoids
these issues. Using QTS, any work partition that is thread-
safe for a non-symmetric matrix is inherently thread-safe
for a symmetric matrix. To avoid the need for thread syn-
chronization, we partition the QTS matrix by row. In Sec-
tion 6.9, we demonstrate that our symmetric concurrent
SpMV kernel scales with thread-count and exploits the re-
duction in memory traffic that matrix symmetry enables.

5. SOFTWARE IMPLEMENTATION

5.1 Matrix Encoding
We implemented all of the matrix formats described in

Section 3 using software to perform the deduplication. For
each format, we implemented binary, quad, and oct-tree
variants. For binary internal tree-degree, we used 8-byte
memory lines, i.e., wide enough to store one double preci-
sion floating point value as a leaf node and enough for two
32-bit pointers in internal nodes. For quad-tree, we used
16-byte memory lines (two doubles per leaf node and four
32-bit pointers per internal node), and for oct-tree, 32-byte
memory lines.

198

procedure TraverseDAG(nodes, height):
sp = 1 # initialize stack pointer
ptrStack[0] = 0 # node pointer stack
offStack[0] = 0 # leaf node offset stack
lvlStack[0] = height # DAG level stack
while(sp):
sp -= 1
level = lvlStack[sp]
offset = offStack[sp]
ptr = ptrStack[sp]
node = nodes[ptr]
if level == 0:
print "offset =", offset, ", leaf =", node

else:
if node.left & pathbit:
decode path & push new offset, level, & node pointer

else:
if node.right:
ptrStack[sp] = node.right
lvlStack[sp] = level
offStack[sp] = offset + 1 << level
sp += 1

if node.left:
ptrStack[sp] = node.left
lvlStack[sp] = level
offStack[sp] = offset
sp += 1

Figure 6: DAG Traversal Code

5.2 SpMV Kernel
We implemented an SpMV kernel for each of the HICAMP

formats. Due to space limitations, we present results only
for HCOO and QTS because they are the most instructive.
For SpMV, we used DAGs with internal node fanout of
four (quad-tree) because this degree achieves higher data-
compaction than oct-tree while exposing more memory par-
allelism than binary-tree. In Figure 6, we show pseudo-
code for traversing a DAG. For simplicity, we show code
for binary-tree. This generic code tracks two explicit state
variables: the current DAG level (level zero indicates a leaf
node) and the offset from the logically leftmost leaf node.
In our QTS kernel, we replace the offset state variable with
row/column state variables. In the HCOO SpMV kernel, we
do not track the offset because the row/column indices are
given explicitly in the leaf node data: DAG traversal stops
when a zero-valued left subtree is encountered. Further, be-
cause the HCOO format stores dense lists, the HCOO kernel
does not check for path compactions. Although the HCOO
kernel must logically traverse two DAGs, as mentioned in
Section 3.5, these DAGs have exactly the same number of
leaf nodes and can thus share their state.

6. PERFORMANCE RESULTS

6.1 Methodology
We report performance results for static memory require-

ments (memory footprint) and for SpMV execution time
speedup. In addition to reporting raw performance, we mea-
sure memory traffic, instructions executed, and instructions
per cycle (IPC). We compare our HCOO SpMV kernel to a
multi-threaded CSR SpMV and we compare our QTS SpMV
kernel to a symmetry aware CSR SpMV kernel. We mea-
sure execution time at nano-second resolution using calls to
clock_gettime() and average the results over many trials.
After the timing run, we measure instruction and cycle count
using the Linux perf tool and we measure DRAM load and

Sockets 2
Cores 12

Threads 24
LLC 12 MB
fclk 2.93 GHz

Mem Channels 3
fmem 1066 MHZ

Mem BW 25.6 GB/sec

Table 1: Test Platform Specifications

store operations using LIKWID [21] to access uncore perfor-
mance counters.

6.2 Test Matrices & Performance Metrics
A set of 74 non-symmetric matrices and 12 symmetric

matrices were drawn from the UF Sparse Matrix Reposi-
tory [10]. We ensure that the underlying data span a number
of disciplines. For an m by n matrix with nnz non-zero ele-
ments, we calculate its non-deduplicated memory footprint
as follows:

bytescsr = 12 · nnz + 4 · m + 4 (2)

working set sizecsr = bytescsr + 8 · m + 8 · n (3)

And the deduplicated memory footprint is as follows:

bytesdag = bytes per node · numnodes (4)

bytes per node =

 8 b–tree
16 q–tree
32 o–tree

(5)

working set sizedag = bytesdag + 8 · m + 8 · n (6)

We compute our key performance metrics as follows:

matrix compaction =
bytescsr
bytesdag

(7)

working set compaction =
working set sizecsr
working set sizedag

(8)

speedup =
tspmv csr

tspmv dag
(9)

mem traffic = 64 · (numdram rds + numdram wrs) (10)

mem traffic advantage =
mem trafficcsr
mem trafficdag

(11)

memBW =
mem traffic

tspmv
(12)

6.3 Compaction Results
Table 2 shows compaction results for non-symmetric ma-

trices for each HICAMP format using binary, quad, and oct-
tree. In Figure 7, we plot the best achieved compaction ra-
tio (Equation 7) versus non-deduplicated size (Equation 2).
The results in Figure 7 are dominated by the QTS and NZD
formats as these two methods simultaneously expose fine
and coarse-grained patterns in the underlying matrices and
take advantage of what symmetry does exist.

199

100K 1M 10M 100M 1B
0.25x

1x

4x

16x

64x

256x

1024x

4096x

16384x

bytesCSR

b
y

t
e

s
C

S
R

b
y

t
e

s
D

A
G

RMA
QTS
NZD
HCSR
HCOO

Figure 7: Matrix Data Compaction (Equation 7) vs.
Uncompacted Size (Equation 2)

Format Degree Geomean Best Worst

RMA
b-tree 1.1x 18x 0.45x
q-tree 0.8x 11x 0.28x
o-tree 0.6x 8x 0.16x

QTS
b-tree 2.5x 5719x 0.46x
q-tree 2.3x 5244x 0.29x
o-tree 1.8x 4028x 0.18x

NZD
b-tree 2.5x 1182x 0.60x
q-tree 2.8x 1160x 0.79x
o-tree 2.6x 918x 0.79x

HCSR
b-tree 1.9x 1289x 0.54x
q-tree 2.2x 1289x 0.76x
o-tree 2.2x 979x 0.87x

HCOO
b-tree 1.8x 1513x 0.54x
q-tree 2.2x 3185x 0.65x
o-tree 2.0x 1141x 0.67x

Table 2: Comparison of HICAMP Matrix Formats

Matrix Matrix Uncompacted Matrix Working Speedup
Size Working Set Compaction Set

Size Compaction

barrier2-1 25 MB 27 MB 0.9x 0.9x 0.9x

poisson3Db 28 MB 29 MB 0.6x 0.7x 0.4x

mc2depi 26 MB 34 MB 1.9x 1.6x 1.6x

TSOPF RS b300 c2 34 MB 34 MB 13.4x 11.6x 1.9x

thermomech dK 33 MB 36 MB 0.9x 0.9x 0.7x

sme3Dc 36 MB 37 MB 0.9x 0.9x 0.7x

stat96v3 38 MB 47 MB 12.5x 4.0x 1.7x

xenon2 45 MB 47 MB 4.4x 3.7x 1.5x

webbase-1M 39 MB 55 MB 1.7x 1.4x 0.9x

rajat29 45 MB 55 MB 1.6x 1.4x 1.1x

stormG2 1000 42 MB 56 MB 6.5x 2.7x 1.6x

Chebyshev4 62 MB 63 MB 1.3x 1.3x 1.1x

largebasis 62 MB 68 MB 3.3x 2.7x 2.3x

pre2 69 MB 79 MB 2.8x 2.3x 1.3x

ohne2 79 MB 82 MB 1.0x 1.0x 0.9x

Hamrle3 69 MB 91 MB 85.9x 4.0x 2.2x

PR02R 94 MB 97 MB 1.1x 1.1x 1.1x

torso1 98 MB 100 MB 1.1x 1.1x 1.2x

Rucci1 97 MB 113 MB 5.7x 3.4x 2.8x

tp-6 133 MB 141 MB 2.3x 2.2x 1.5x

atmosmodl 124 MB 147 MB 3185.0x 6.4x 3.7x

TSOPF RS b2383 185 MB 186 MB 12.8x 12.3x 1.8x

circuit5M dc 184 MB 237 MB 1.7x 1.5x 1.2x

rajat31 250 MB 322 MB 115.1x 4.4x 2.2x

cage14 316 MB 339 MB 2.0x 1.9x 1.0x

FullChip 316 MB 362 MB 1.7x 1.5x 0.9x

RM07R 430 MB 436 MB 1.2x 1.2x 1.1x

circuit5M 702 MB 787 MB 3.0x 2.5x 1.8x

average n/a n/a 124.0x 2.5x 1.5x

Table 3: HCOO Compaction and SpMV Speedup

0x

1x

2x

3x

4x

Im
pr

ov
em

en
t R

at
io

po
iss

on
3D

b
ba

rri
er

2−
1

sm
e3

Dc
th

er
m

om
ec

h_
dK

oh
ne

2
RM

07
R

PR
02

R
to

rs
o1

Fu
llC

hip
Ch

eb
ys

he
v4

cir
cu

it5
M

_d
c

ca
ge

14
we

bb
as

e−
1M

ra
jat

29
cir

cu
it5

M

tp
−6

pr
e2

Ru
cc

i1
ra

jat
31

lar
ge

ba
sis

working set compaction
mem. traffic advantage

Figure 8: Memory Traffic Advantage and Matrix
Compaction for Non-Cacheable Matrices

6.4 SpMV Execution Time
For SpMV performance evaluation, we restrict our at-

tention to the 28 matrices whose working set size exceeds
the capacity of the last level cache. Table 3 shows the
speedup obtained for these matrices. We achieve an average
speedup of 1.5x and a best-case speedup of 3.7x (for matrix
atmosmodl).

Because our speedup lags the potential improvement in-
dicated by the compaction results, in the remainder of this
section, we investigate this discrepancy by analyzing mem-
ory traffic, memory bandwidth, instruction count, and IPC.

6.5 Memory Traffic
In Figure 8, we compare memory traffic advantage (Equa-

tion 11) to working set compaction (Equation 8). We ob-
serve that the reduction in memory traffic is indeed corre-
lated to this compaction metric. As the amount of com-
paction increases, the probability of evicting a highly dedu-
plicated node from the cache increases. This results in a
diminishing return in terms of memory traffic as compared
to working set compaction.

In Figure 8, we omit eight matrices whose working sets
were compacted to a size smaller than the last level cache
capacity. Although we would like to show these on the plot,
their memory traffic ratio is heavily skewed in favor of SpMV
speedup and the remaining data points are obscured. As a
specific example, matrix stat96v3 had its working set com-
pacted from 47 MB to 12 MB resulting in a memory traffic
advantage of 90x. For stat96v3, the SpMV execution time
speedup was only 1.7x. Obviously, the compaction technique
is providing a substantial advantage in terms of memory traf-
fic and one can conclude that DRAM bandwidth is not the
performance limiting factor. In the following sections, we
investigate performance limits by analyzing sustained band-
width, instruction count, and IPC.

6.6 Memory Bandwidth
In Figure 9, we plot the sustained memory bandwidth for

all matrices in our test set. Additionally, we show the peak
theoretical bandwidth of 25.6 GB/sec and the maximum
sustainable bandwidth obtained by running the synthetic
benchmark stream [18]. As expected, the CSR implementa-

200

1M 10M 100M 1B
0 GB/s

5 GB/s

10 GB/s

15 GB/s

20 GB/s

25 GB/s

30 GB/s
Memory Bandwidth

working set size (bytes)

CSR
HCOO
rated
stream

Figure 9: Sustained Bandwidth to DRAM

procedure RMA_SpMV(mtxSegID, m, n, y, x):
it = IterReg(mtxSegID)
it.SetSkipZeroValuesOnIncrement()
while(it.Pos() != it.End()):
v = it.Val()
p = it.Pos()
r = p / n
c = p % n
y[r] += v * x[c]
it.PosInc()

Figure 10: SpMV Using an Iterator Register

tion of SpMV attains the maximum sustainable bandwidth
to DRAM (as given by stream) when the working set size ex-
ceeds twice the capacity of the last level cache (solid vertical
line in Figure 9).

6.7 Instruction Count
Although effective at reducing memory traffic, our method

imposes the cost of significantly increased instruction count.
We find that the CSR implementation executes approxi-
mately 9 instructions per non-zero value while our HCOO
kernel requires, on average, 26. A significant amount of im-
plementation effort was spent on minimizing the amount of
generated code in the performance critical kernel, and de-
spite this, the ratio is still quite unfavorable.

To illustrate that this code overhead would be significantly
reduced by implementing hardware such as the HICAMP
iterator register, we show pseudo-code for SpMV using the
RMA format in Figure 10. Visually comparing to the code
in Figure 6, it is clear that there are fewer lines of source
code. More importantly, because the iterator register im-
plements DAG traversal in hardware, the amount of gener-
ated code will be far less. In particular, a command such
as it.PosInc() is reduced to a single hardware instruc-
tion. Moreover, the iterator register hardware provisions
fast memory for the DAG nodes along the path to the cur-
rent leaf node and concurrently maintains meta-data such
as its offset from the leftmost leaf; the software implemen-
tation (Figure 6), is required to maintain a pointer stack,
offset stack, and level stack. All of these benefits are retained

0.25x

0.50x

1x

2x

4x

8x

16x

32x

64x

128x

Im
pr

ov
em

en
t R

at
io

po
iss

on
3D

b
ba

rri
er

2−
1

sm
e3

Dc
the

rm
om

ec
h_

dK
oh

ne
2

RM
07

R
PR

02
R

tor
so

1
Fu

llC
hip

Ch
eb

ys
he

v4
cir

cu
it5

M_
dc

ca
ge

14
we

bb
as

e−
1M

ra
jat

29
mc

2d
ep

i
cir

cu
it5

M
tp−

6
pr

e2
Ha

mr
le3

Ru
cc

i1
ra

jat
31

lar
ge

ba
sis

sto
rm

G2
_1

00
0

atm
os

mo
dl

TS
OP

F_
RS

_b
23

83

TS
OP

F_
RS

_b
30

0_
c2

xe
no

n2
sta

t96
v3

actual speedup
mem traffic limit
compute limit

Figure 11: Performance Limits and Speedup

when extending the code shown in Figure 10 to handle other
formats such as QTS, NZD, and HCOO.

6.8 Performance Limits
We conclude that the two relevant performance limits are

main memory bandwidth and compute:

bw limit =
mem trafficcsr
mem trafficdag

(13)

compute limit =
numinstructions csr/IPCcsr

numinstructions dag/IPCdag
(14)

In Figure 11, we plot the obtained SpMV speedup (Equa-
tion 9) and compare it to the memory bandwidth limit (Equa-
tion 13) and the compute limit (Equation 14).

The bandwidth limit is plotted under the assumption that
our kernel can achieve the maximum sustainable bandwidth
as indicated by stream. This assumption is justified by the
high sustained bandwidth exhibited by the data sets that
do not achieve a significant reduction in working set size
(see Figure 9). The compute limit is plotted under the as-
sumption that our method can sustain an IPC of 2 (i.e. if
not bandwidth limited) and that the CSR method achieves
only an IPC of 0.5 (i.e. because it is always bandwidth lim-
ited). The average IPC numbers, and other data such as
instruction count and DRAM operations, are based on pro-
filing (described in Section 6.1) for the matrices shown in
Figure 11.

Prior to the advent of multi-core, SpMV optimization re-
search focused on adding work to the inner loop [22] so that
maximum sustainable bandwidth could be attained. Our
results shown in Figure 9 indicate that we achieve maxi-
mum sustainable bandwidth, but through the use of threads
rather than optimizations that generate more memory ac-
cesses within a given code block. This is a result of current
technology trends: the available memory bandwidth per core
is dropping [1]. These technology trends and our results,
based on measurements from actual hardware, imply that
a HICAMP system provisioned with the same amount of
cache as our test platform (Figure 1) could operate at the
bandwidth limit and achieve a best-case speedup of 90x. In
Figure 12, we simulate further decreases in available band-
width per core by re-running our experiments using three,

201

0.71.42.1
3.5x

4.0x

4.5x

5.0x

5.5x

6.0x

6.5x

7.0x

7.5x

GB/sec/core

sp
ee

du
p

vs
. C

SR

Figure 12: HCOO SpMV speedup vs. multi-
threaded CSR as GB/sec/core drops (matrix at-
mosmodl)

0.50x

1x

2x

4x

8x

16x

32x

64x

128x

Im
pr

ov
em

en
t R

at
io

kk
t_

po
we

r

pd
b1

HY
S

tm
t_

sy
m

G3
_c

irc
uit

Si
O2

af
_s

he
ll8

nlp
kk

t1
20

bo
ne

01
0

ec
olo

gy
2

ca
nt

TS
OP

F_
FS

_b
30

0_
c3

actual speedup
mem traffic limit
compute limit

Figure 13: Performance Limits for QTS SpMV on
Symmetric Matrices

then two, and then one memory channel: as the cores be-
come more bandwidth starved, our method starts to signif-
icantly outperform the traditional CSR method.

6.9 QTS Symmetry Oblivious SpMV
We now assess the performance of our symmetry oblivi-

ous QTS SpMV kernel. We compare performance to single
threaded symmetric CSR SpMV because this kernel achieves
the lowest memory traffic. In Figure 13, we show the per-
formance limits versus the speedup achieved. The best-case
memory traffic advantage of 71x would be 142x (matrix
TSOPF FS b300 c3) if we compared to a parallelized SpMV
kernel without symmetric storage. In some cases, we trans-
fer more data than required by symmetric CSR SpMV due
to a combination of cache evictions and less raw compaction.

The QTS SpMV kernel has even more code overhead than
our HCOO SpMV kernel with an average of 121 instructions
per non-zero matrix element (compared to an average of 26
for HCOO). Because of this, its compute limit is lower and

1 2 3 4 5 6 7 8 9 10 11 12
1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

sp
ee

du
p

vs
. s

in
gl

e
th

re
ad

ed
 Q

TS

Number of Threads

slope = 0.95

Figure 14: QTS SpMV Scaling With Threads (ma-
trix nlpkkt120)

its raw performance lags. In Figure 14, we show that, when
compute limited, our method scales very close to linearly
with additional cores (matrix nlpkkt120). For many matri-
ces, we have significant headroom to allow this scaling to
continue as indicated by Figures 11 and 13.

7. RELATED WORK
The literature on optimizing SpMV is vast: a testament

to the difficulty and importance of this task. Historically,
it was difficult to achieve peak performance due to the very
tight inner loop of SpMV coupled with the indirect and ran-
dom access pattern into the source vector. This motivated
research into methods for adding extra work into the inner
loop and regularizing data access patterns. Regularized data
access can be achieved by finding dense matrix sub-blocks
or through domain specific knowledge that allows a highly
customized SpMV kernel to be invoked. Because the band-
width limitation has long been recognized, research has also
focused on methods for reducing memory traffic. Thus, most
research into optimizing SpMV can be categorized as either
reducing memory traffic, adding work to the inner loop, reg-
ularizing data access patterns, or some combination of these.

7.1 Non-Symmetric SpMV
The block compressed sparse row (BCSR) format captures

all three of these tactics by using a CSR index structure to
point to dense submatrices (or blocks). Because the blocks
are fixed size and dense, they exhibit regular data access
patterns and allow for optimal loop unrolling. Further, some
matrices require less storage because of reduced index data
overhead. Vuduc [22] and Williams [25], et al., describe
OSKI, a framework for autotuning BCSR SpMV kernels.

With the advent of programmable GPUs, researchers have
attempted to utilize the high GPU to video-memory band-
width. Bell and Garland [3] describe methods to approach
maximum sustainable bandwidth for SpMV on GPU through
several techniques directed at regularizing data access. Be-
cause power constraints now force GPUs to include large
on-die caches, the regular control flow of our HCOO format
makes it an interesting candidate for GPU implementation.

202

Method Best Best Index Value Data Kernel
CompactionSpeedupCompactionCompaction Reuse Code

DCSR 1.4x 1.5x Yes No No Generic

PBR 1.5x 1.5x Yes No Via Code1 Per Matrix

RPCSR 1.5x 1.5x Yes Yes Via Code1 Per Matrix

CSR-DU 1.3x 1.8x Yes No No Generic

CSX 1.9x Yes No Via Code1 Per Matrix

RSB 2.0x Yes No No Generic

CSR-VI 2.4x 2.5x Yes Yes Yes Generic

RBCSB 3.5x Yes No No Generic

DAG (this work) 5700x 3.7x Yes Yes Yes Generic

(1) Matrix structure embedded in custom generated code

Table 4: Comparison of Non-Symmetric SpMV
Compaction Techniques

To improve the concurrent scalability of computing ATx,
Buluç et al. introduced the new compressed sparse block
(CSB) format [6] which has storage and performance similar
to CSR. In the reduced bandwidth compressed sparse block
(RBCSB) format [7], Buluç et al. use bitmasked register
blocks (similar to the NZD pattern matrices in Section 3.3)
to reduce the storage requirements of CSB.

Kourtis et al. [13,14], explore the effect of delta-encoding
the index values (CSR-DU) and then add value deduplica-
tion via an indirection map (CSR-VI). Willcock and Lums-
daine [24] present the delta-coded sparse row (DCSR) method
(similar to CSR-DU).

More sophisticated attempts to reduce memory traffic have
used offline analysis followed by code generation (resulting in
a custom SpMV kernel on a per matrix basis). In the com-
pressed sparse extended (CSX) method [15], Kourtis ana-
lyzes each matrix separately to discover the underlying non-
zero structure and customizes the delta encoding scheme for
the index values. In their row pattern CSR (RPCSR) for-
mat [24], Willcock and Lumsdaine exploit macro-scale pat-
terns in each matrix row. Finally, Belgin et al., observe that
the underlying physical problem often generates a set of sev-
eral distinct sub-matrix patterns. They exploit this in their
pattern based-representation (PBR) [2].

Recursive matrix layouts, similar to our QTS format, have
inspired recent papers [4,17]. In their recursive sparse blocks
(RSB) format [17], Martone et al., use a quad-tree with Z-
Morton ordering to store pointers to sparse submatrices that
are sized to balance the work partitions. Because the quad-
tree structure implies an offset (similar to our implicit in-
dices), they use 16 bit index elements in the leaf submatrices.

In Table 4, we compare the techniques using explicit com-
paction and show the best-case speedup for each method.
Data in Table 4 are based on a comparison to multi-threaded
CSR when available, otherwise to the best proxy available
in the respective paper.

7.2 Concurrent Symmetric SpMV
Several recent papers have also explored techniques for en-

abling concurrent symmetric SpMV. In addition to improv-
ing the CSB format by using register bitmasking, Buluç [7]
describes a technique to exploit symmetric storage also us-
ing the CSB format. Starting from the observation that
a block diagonal symmetric matrix is trivially parallelized,
Buluç uses Reverse Cuthill-McKee (RCM) ordering to bring
most non-zero elements close to the diagonal. The portions
of the matrix, which are in blocks one and two positions off
diagonal, are then assigned to separate rounds (coordinated
to avoid write-write conflicts) while the elements further off
diagonal (few in number) require atomic updates to the des-
tination vector. The cluster scale solution, presented by

Krotkiewski and Dabrowski [16], also starts by using RCM
re-ordering and then handles all off-block-diagonal entries
with local result buffers and attempts to overlap communi-
cation and computation across rounds. Such methods pro-
vide the benefit of scaling with threads, up to the mem-
ory bandwidth limit, but come at the cost of pre and post-
processing steps and still require thread synchronization and
either atomic updates or explicit communication.

Tangwongsan et al. [4], introduce a hierarchical storage
format that points to the same memory region for off diag-
onal blocks if the matrix is symmetric (similar to our QTS
format). These authors also point out that this kind of ma-
trix storage enables lock and synchronization free concur-
rent symmetric SpMV. Their method achieves an average of
1.8x less memory traffic when using double precision values.
These authors further reduce memory traffic by switching
from double to single precision floating point, but do not
use any other compaction or deduplication techniques.

8. CONCLUSIONS
In this work, we have shown that fine-grained data dedu-

plication and DAG storage provide efficient representations
for sparse matrices and can reduce memory traffic during
the bandwidth limited SpMV kernel. Our results indicate
that our method improves sparse matrix storage density by
a factor of two on average (formats QTS, NZD, HCSR, and
HCOO in Table 2). We show that the recursive nature of our
data-deduplication technique can provide large advantages
in storage density as demonstrated by the 5700x compaction
achieved by the QTS format. Our worst-case storage den-
sity is O(nnz) for a compressed sparse matrix (HCSR and
HCOO) or O(nnz · log(n)) for a logically dense or hybrid
sparse matrix (RMA, QTS, and NZD).

Using our matrix storage techniques, we demonstrate an
average speedup of 1.5x using a custom SpMV kernel run-
ning on standard hardware. By measuring DRAM accesses,
we show a memory traffic advantage in proportion to the
reduction in working set size. The relative benefit of our
method depends on the memory traffic required (matrix spe-
cific) and the available bandwidth per core (Figure 12). For
matrices exceeding LLC capacity (Figure 11), our data in-
dicate an average reduction in memory traffic of 2.8x and
best-case reduction of 90x.

For matrices with the highest potential speedup, instruc-
tion count overhead prohibits our software kernel from fully
exploiting available memory bandwidth. The iterator regis-
ter, described in the HICAMP architecture [9] (Section 2.3,
Figure 10), eliminates this code overhead.

We introduce the novel QTS matrix format that inher-
ently exploits any amount of matrix symmetry. Because the
QTS format is symmetry oblivious, any thread safe work par-
titioning for the QTS format is safe for a symmetric matrix.
Using this format, we demonstrate symmetric concurrent
SpMV without any locks or matrix reordering.

Based on these results, we plan to implement iterator reg-
ister hardware either as a custom feature in an existing ISA
(e.g. using Tensilica TIE instructions [11]) or in an FPGA.
For the specific purpose of SpMV, the iterator register func-
tionality can be enhanced by adding a state machine to keep
track of implicit matrix indices (for the QTS format) and a
separate accumulate and store unit can take the fetch of
destination vector elements off of the critical path.

As mentioned, current trends show that processing capa-

203

bility is increasing faster than memory bandwidth [1] and
that caches are growing relatively faster than core count [5].
Both larger caches and additional cores benefit the method
we have demonstrated. These trends and our data indicate
that HICAMP enables otherwise difficult to achieve perfor-
mance benefits.

9. REFERENCES
[1] A. Bechtolsheim. Technologies for Data-Intensive

Computing. In Proceedings of the 13th International
Workshop on High Performance Transaction Systems.
HPTS, October 2009.

[2] M. Belgin, G. Back, and C. J. Ribbens. Pattern-based
Sparse Matrix Representation for Memory-Efficient
SMVM Kernels. In Proceedings of the 23rd
International Conference on Supercomputing (ICS
’09), pages 100–109. ACM, June 2009.

[3] N. Bell and M. Garland. Implementing Sparse
Matrix-Vector Multiplication on Throughput-Oriented
Processors. In Proceedings of Supercomputing (SC
’09), pages 18:1–18:11. ACM, November 2009.

[4] G. Blelloch, I. Koutis, G. Miller, and K. Tangwongsan.
Hierarchical Diagonal Blocking and Precision
Reduction Applied to Combinatorial Multigrid. In
Proceedings of Supercomputing (SC ’10), pages 1 –12,
November 2010.

[5] S. Borkar and A. A. Chien. The Future of
Microprocessors. Communications of the ACM,
54:67–77, May 2011.

[6] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and
C. E. Leiserson. Parallel Sparse Matrix-Vector and
Matrix-Transpose-Vector Multiplication Using
Compressed Sparse Blocks. In Proceedings of the 21st
Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’09, pages 233–244. ACM, 2009.

[7] A. Buluç, S. Williams, L. Oliker, and J. Demmel.
Reduced-Bandwidth Multithreaded Algorithms for
Sparse Matrix-Vector Multiplication. In International
Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International, pages 721 –733, May 2011.

[8] D. R. Cheriton. Hierarchical Immutable
Content-Addressable Memory Processor, January
2010. U.S. Patent 7650460.

[9] D. R. Cheriton, A. Firoozshahian, A. Solomatnikov,
J. P. Stevenson, and O. Azizi. HICAMP: Architectural
Support for Efficient Concurrency-Safe Shared
Structured Data Access. In Proceedings of the 17th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’12, pages 287–300, New York, NY, USA,
2012. ACM.

[10] T. A. Davis and Y. Hu. The University of Florida
Sparse Matrix Collection. ACM Trans. Math. Softw.,
38:1:1–1:25, November 2011.

[11] R. Gonzalez. Xtensa: A Configurable and Extensible
Processor. Micro, IEEE, 20(2):60–70, Mar/Apr 2000.

[12] E.-J. Im, K. A. Yelick, and R. Vuduc. SPARSITY:
Framework for Optimizing Sparse Matrix-Vector
Multiply. International Journal of High Performance
Computing Applications, 18(1):135–158, February
2004.

[13] K. Kourtis, G. Goumas, and N. Koziris. Improving the
Performance of Multithreaded Sparse Matrix-Vector
Multiplication Using Index and Value Compression. In
37th International Conference on Parallel Processing
(ICPP ’08), pages 511–519, September 2008.

[14] K. Kourtis, G. Goumas, and N. Koziris. Optimizing
Sparse Matrix-Vector Multiplication Using Index and
Value Compression. In Proceedings of the 5th
Conference on Computing Frontiers (CF ’08), pages
87–96. ACM, May 2008.

[15] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris.
CSX: An Extended Compression Format for SpMV on
Shared Memory Systems. In Proceedings of the 16th
ACM Symposium on Principles and Practice of
Parallel Programming, pages 247–256, February 2011.

[16] M. Krotkiewski and M. Dabrowski. Parallel Symmetric
Sparse Matrix-Vector Product on Scalar Multi-Core
CPUs. Parallel Computing, 36(4):181 – 198, 2010.

[17] M. Martone, S. Filippone, P. Gepner, M. Paprzycki,
and S. Tucci. Use of Hybrid Recursive CSR/COO
Data Structures in Sparse Matrix-Vector
Multiplication. In IMCSIT, pages 327–335, October
2010.

[18] J. D. McCalpin. Memory Bandwidth and Machine
Balance in Current High Performance Computers.
IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pages
19–25, December 1995.

[19] K. K. Nagar and J. D. Bakos. A Sparse Matrix
Personality for the Convey HC-1. In Proceedings of the
19th Annual Symposium on Field-Programmable
Custom Computing Machines (FCCM ’11), pages 1–8.
IEEE, May 2011.

[20] S. Toledo. Improving the Memory-System
Performance of Sparse-Matrix Vector Multiplication.
IBM Journal of Research and Development,
41(6):711–725, November 1997.

[21] J. Treibig, G. Hager, and G. Wellein. LIKWID: A
Lightweight Performance-Oriented Tool Suite for x86
Multicore Environments. In Proceedings the
International Workshop on Parallel Software Tools
and Tool Infrastructures, 2010.

[22] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A
Library of Automatically Tuned Sparse Matrix
Kernels. In Proceedings of SciDAC 2005, Journal of
Physics: Conference Series, San Francisco, CA, USA,
June 2005. Institute of Physics Publishing.

[23] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil,
R. Nishtala, and B. Lee. Performance Optimizations
and Bounds for Sparse Matrix-Vector Multiply. In
Proceedings of Supercomputing (SC ’02), Baltimore,
MD, USA, November 2002.

[24] J. Willcock and A. Lumsdaine. Accelerating Sparse
Matrix Computations via Data Compression. In
Proceedings of the 20th International Conference on
Supercomputing (ICS ’06), pages 307–316. ACM, June
2006.

[25] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel. Optimization of Sparse Matrix-Vector
Multiplication on Emerging Multicore Platforms. In
Proceedings of Supercomputing (SC ’07), pages
38:1–38:12. ACM, November 2007.

204

