
Bringing Up a Chip on
the Cheap
Megan Wachs, Ofer Shacham, Zain Asgar,

Amin Firoozshahian, Stephen Richardson, and

Mark Horowitz

Stanford University

h ‘‘CONGRATULATIONS, IT’S A . . . chip!’’ Much like

real babies, a newly born chip starts its life helpless,

and (unfortunately) much like a real baby, it takes

significant work to nurture the chip until it takes its

first step; and even more work getting it to run real

applications as a mature adult. Anyone who ever

built a chip knows that tapeout is never the end. In

some ways, it’s just the beginning. After fabrication,

the chip must be ‘‘booted’’ on some kind of real

system, to verify correct functionality. This bringup

process is expensive and time-consuming, as well as

something of a distraction for the validation team,

who truly wish(ed) that tapeout really was the end

of the process. In addition, the bringup of any chip,

especially a test chip, can only be allocated limited

resources.

This paper describes one team’s experience

bringing up a research chip: Stanford Smart Mem-

ories (SSM). This chip was designed and validated

by a very small team, although as an 8-core, recon-

figurable chip multiprocessor with 55 million tran-

sistors, it was by no means a simple chip. The design

of this substantial chip took several years, and by

tapeout, its supporting

research contract had ex-

pired, resulting in ex-

tremely limited funds for

implementing the postsili-

con processes. Testability

of the chip was considered

from the beginning, and

the team implemented

several well-known industry techniques to aid post-

silicon debugging. However, our team had to look

for a creative solution for the bringup platform. For-

tunately, an early design choice had us use an estab-

lished processor from Tensilica as the chip’s core

compute engine, one with solid built-in debugging

support. We then found creative ways to leverage

Berkeley’s BEE2 FPGA platform [2] as a generic

means for system testing, even though it was never

intended for bringup. By using this commodity

hardware supplemented by a very simple daughter

card, the bringup tasks were achievable by 1-2 grad

students working part time. The bringup process,

from getting silicon in hand to having it run system-

level programs (SPLASH-2 [2] kernels running on

multiple processors) took only about a month. A 32-

processor system of four chips has been successfully

constructed using the same platform.

While industrial designs may have more re-

sources and need for a custom testing platform

(especially since the design is likely to be part of at

least one commercial product), this paper is de-

signed to provide encouragement, advice, and pitfall

lessons for teams desiring to bring up a chip quickly,

with minimum custom hardware (i.e. on the cheap).

Section II briefly describes the SSM chip, while

Section III explains how we planned for bringup

Editor’s notes:
Booting and debugging the functionality of silicon samples are known to be
challenging and time-consuming tasks, even more so in cost-constrained
environments. The authors describe their creative solutions used to bring up
Stanford Smart Memories (SSM), a 55-million transistor research chip.

VNicola Nicolici, McMaster University

0740-7475/12/$31.00 B 2012 IEEENovember/December 2012 Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC 1

Digital Object Identifier 10.1109/MDT.2011.2179849

Date of publications: 00 Month 0000.

during RTL design. Section IV describes our bringup

platform and tells our bringup story. Section V ana-

lyzes the utility of the various debugging features.

The smart memories chip
The Stanford Smart Memories (SSM) research

project [4]–[8] aimed to build a hardware platform

supporting multiple programming models by relying

on a flexible execution and memory system archi-

tecture. Each SSM chip contains eight Tensilica pro-

cessors, several modular reconfigurable memory

blocks, and a programmable protocol controller. An

off-chip interconnection network joins the chips to

main-memory controllers (MC). RTL for MCs and

network switches (NS) was to be implemented as

separate board-level glue logic. System simulation

integrated four SSM chips with RTL versions of

1-4 MCs and an NS to provide 32-core functionality.

SSM’s software includes a C/C++ Tensilica compiler

instrumented with special Tensilica Instruction

Extension (TIE) instructions. SSM taped out as an

eight-core chip multiprocessor in late 2008. ST-

Microelectronics fabricated the 61 mm2 silicon

chip in 90 nm technology, shown in Figure 1a.

Designing for bringup
Long before tapeout, we considered the bringup

process to ensure that when the chip returned from

fabrication, we could debug any failures. Designers

in industry and academia have long addressed the

same challenge ([3]–[12], to name a few). The

SSM’s design originally involved a custom processor

called Imagine, in development by another Stanford

group. For practical reasons, we instead chose to use

Tensilica, an established processor with debugging

support. We leveraged Tensilica’s on-chip debugger

(OCD), controlled via industry-standard JTAG (IEEE

Std. 1149.1-2001), by concatenating the processors’

JTAG chains (see Figure 2). OCD enables using stan-

dard tools like gdb after tapeout. In addition, we

mapped the processors’ debug trace ports to confi-

guration registers, accessible via processor or JTAG

reads.

To read/write the SSM configuration, debug, and

on-chip memory space, we added a ninth JTAG

controller at the chip level. Extensive JTAG simula-

tions ensured that it could load programs into on-

chip memories, configure the system, and run tests

without a more sophisticated platform. The JTAG

interface also enabled boundary scan for EXTEST

and SAMPLE testing, as well as full scan.

Special consideration was given to the power-on/

reset sequence, as this can be Achilles’ heel of any

design, especially a reconfigurable design. Two sig-

nals, Reset and DisableBootProc, control SSM’s confi-

guration and boot sequence. With DisableBootProc

in its normal OFF position, a positive edge on Reset

places SSM in its default configuration and starts one

processor. This processor can further configure the

chip and bring other processors out of reset. With

DisableBootProc ON, however, posedge Reset still

configures the chip, but nothing runs. In this state,

JTAG can configure the chip and bring processors

out of reset via configuration writes.

SSM also had a significant amount of statistic-

gathering support. It supported extensive logging for

Figure 1. (a) Die photograph of the 61 mm2, 55M-transistor SSM chip fabricated in 90 nm technology.
Each chip includes eight Tensilica processors, 64 KB of local configurable memory, and a memory
system with programmable protocol controller. (b) Simple riser card, used to connect a BEE2 DIMM
socket to an SSM daughter card. (c) and (d) Custom daughter cards, with soldered chip and with a
socket (respectively). (e) A complete system mounted on the BEE2 platform. Silicon bringup included
testing of 1–32 processor systems (up to four SSM chips as shown).

IEEE Design & Test of Computers2

General Interest

performance information at several levels, and

could be configured to record four instruction-level

traces into on-chip memory. Compressed, these

traces can record up to 4K instruction branches

for each processor. Several registers on the chip

(accessible via processor or JTAG reads) mapped to

debugging information, such as each processor’s

current PC, stall state, etc. As a final window into a

nonresponsive chip, a dedicated set of 12 output

pins connected to key internal signals (such as

resets and actively monitored processor clocks),

similar to the ‘‘Observability Bus’’ in [7]. An input-

controlled multiplexer selected between 32 vectors,

unconstrained by timing, because they would only

be observed with a slow clock.

Before committing to tapeout, we had to design a

platform that would communicate with our chip. To

reduce the probability of error from reasons unre-

lated to our research goals, excess features were

relegated to ‘‘the FPGA,’’ the mythical device that

would allow SSM to communicate with the outside

world. For example, an abstract flit-based network

interface replaced an on-chip memory controller,

synchronized by an I/O clock divisible by 1-8 relative

to the core clock. The FPGA would implement our

MC as well as provide access to a 3-GB memory

space. Vermuelen and Goel [10] consider using the

application board to do all this, but our bringup

system had to avoid custom hardware. This was to

reduce costs, but also because such work was out-

side of the research goalsVit was overhead that

could only lead to student burnout.

Since we had already emulated our design with a

Berkeley BEE2 [2] board, we decided to use the

BEE2’s FPGAs to implement the glue logic for bring-

up, as shown in Figure 3. The FPGA’s PowerPC served

as a host, allowing us to connect via BEE2’s Ethernet

port and run tests remotely. This scheme required a

way to connect the SSM chip to the BEE2 board.

Unfortunately, the BEE2 was not designed to be

extensible and had limited I/O.

After struggling with the SSM’s I/O requirements

and considering the BEE2’s low I/O counts, we

arrived at a solution: remove two DDR2 DIMM cards

from the BEE2 board, and use the over 200 available

DDR signals to communicate with SSM. For elec-

trical signal integrity reasons, the connections had

to be terminated (with 50�, resistors to prevent

reflections)Vthey were. Each also needed to be an

independent signal lineVmost were. SPICE simula-

tions ensured that BEE2 signal levels were compat-

ible with an SSM’s 1.8 V I/O level. A few more sanity

checks convinced us that this would be a viable

solution. Using half of the DIMM slots in this way,

however, limited the platform to 2 GB of memory,

which would be partitioned between the host

PowerPC (which controls the platform) and the

MC (part of the system under test). Therefore, a

memory translation block was inserted between the

MC and the true DDR2 controller (see Figure 3). This

single-cycle latency block mapped twelve 0.25 GB

memory segments, covering SSM’s address space

from 1 GB-4 GB (SSM did not use off-chip addresses

below 1 GB). SSM memory accesses included both

meta-data and data, so fully mapping a 0.25 GB

address range required 0.5 GB of DDR memory. Each

SSM segment could map to a 64-512 MB DDR block,

specified by starting address and size. If a processor

accessed an address that was too high, the behavior

would be erroneous, but we controlled the compiler

and ensured that each instruction, data, stack etc.

region did not exceed its segment size. The transla-

tion block also checked for overflow. A commercial

chip could warrant a custom platform with dedi-

cated I/O connections, but this design allowed us to

Figure 2. Schematic representation of the
SSM chip showing the tiled processors
and the protocol controller, with the serial
connection of JTAG test access ports
(TAPs). Each Tensilica processor has a TAP
to control its on-chip debugger. These were
stitched with the chip level TAP, which
controlled the configuration registers,
accessed the on-chip memory space, and
handled the scan chains.

November/December 2012 3

proceed to tapeout without constructing a custom

test rig.

Bringup system and flow
With the BEE2 as a commodity platform, we

could push a significant amount of support functio-

nality onto the FPGAs, requiring only a simple board

to hold SSM. After exploring several DIMM socket

connection options, we created custom riser cards

(see Figure 1b), to both physically support the

daughter card above the FPGAs, and transmit signals.

The custom daughter card (see Figures 1c and

1d) holding SSM had few components. Manual

switches controlled some signals (ChipID, Debug-

MuxSel, TestMode, ScanEn, IODiv, DisableBootProc,

and Reset). The FPGA could also control most of

these, to allow remote testing. A JTAG connector on

the daughter card allowed quick standalone testing,

but we also routed the JTAG sig-

nals with the flit signals through

the riser cards to the FPGA.

Figure 3 shows the configura-

tion of the BEE2 control FPGA to

manage this 8-CPU system.

The daughter card’s on-

board power supply regulates

12 V down to 1 V (core) and

1.8 V (IO), to limit noise and

handle current requirements.

SSM’s clock could be provided

by either a pulse generator or

by the BEE2. A few LEDs indi-

cated the state of Reset and

DisableBootProc, and reflected

flit activity.

For detailed flit monitoring,

the FPGAs implemented snoop-

ing FIFOs (see Figure 3) to log

all traffic among SSM, MC, and

main memory. We added a

‘‘system call’’ to SSM’s software

layer, allowing the host to reset

these FIFOs and capture traces

of interest.

An expanded testing system

used BEE2 FPGAs to support 32

processors on four chips with

four MCs and a NS (Figure 1e).

The four user FPGAs held the

MCs while the control FPGA

held the NS (Figure 4). Here we encountered two

BEE2 platform limitations. First, the original NS was

too large for BEE2’s Virtex-II FPGA, so we had to

design a more area-efficient version. Second, the

BEE2 board was optimized for data transfer between

user FPGAs, but not between user and control FPGAs,

so those communication channels were very narrow.

We subdivided and re-marshalled SSM’s flits, which

was architecturally possible because SSM made no

latency assumptions on its memory interface.

Figure 5 shows the timeline of design, manufac-

turing, and bringup activities. SSM taped out in

September of 2008. An unexpected dependency de-

layed testing: the chip required a custom package

which required a custom socket. However, the sock-

et design required (unless we signed away all res-

ponsibility) completed sample packages before

socket manufacture. Since mechanical samples

Figure 3. Single-chip-system control FPGA, including host PowerPC,
SSM interface, and memory controller (MC). Users could log onto the host
PC via Ethernet. Snooping FIFOs logged up to 1K transactions between
the MC and SSM and between the MC and the physical memory translator.
The large shaded area shows what part of the system is in the SSM clock
domain; the remainder is in the BEE2 clock domain. The dashed-line
box depicts the boundary of the FPGA. Note that, except for the SSM chip
and the DIMMs, all IP blocks shown above reside on the FPGA.

IEEE Design & Test of Computers4

General Interest

were prohibitively expensive,

we had to wait until we had

the first round of actual pack-

aged chips (February 2009)

before releasing the socket de-

sign. Thus the sockets became

the testing bottleneck. However,

once we received them (May

2009) things progressed quickly.

The first ‘‘aliveness’’ test sim-

ply provided a clock to the chip,

to (hopefully) observe the di-

vided output clock. This test ini-

tially failed when the chip drew

no current at power-on. Exam-

ining the failing chips revealed

that the wirebonding company

had not bonded the power and

ground pads. This was the con-

sequence of people (us), who

weren’t regulars at bringup,

miscommunicating with the wirebonder. It is appar-

ently common practice for pads on a chip to be left

unpopulated, so the wirebonder did not hesitate to

leave wires unconnected to the power or ground

rings in the package. Fortunately, this issue was

quickly diagnosed by visual inspection, since the

chips had been packaged ring-and-lid style. After

correctly bonding the next round and passing the

‘‘heartbeat’’ test, the bringup led to basic function-

ality tests using the JTAG interface via a Macraigor

USBWiggler. These tests allowed reading and writing

registers and on-chip memories, configuring the

system, and running small programs, all without

FPGA support. This round occupied the first half of

May 2009.

The main testing involved running a single-chip

system with BEE2’s control FPGA. The riser cards let

SSM communicate directly with the MC on the BEE2,

so the system was almost identical to the simulated

version. The only difference was the memory remap-

ping step between the MC and the DIMM, but this

issue had already been addressed when we used the

BEE2 for design emulation.

As always, real testing revealed unpredicted pit-

falls. An initialization problem in the MC was easily

overcome (over three days in late May 2009), not

because the MC was implemented on an FPGA, but

because it could be reconfigured by the host. After

diagnosing and resolving some minor soldering

issues on the board, all single-chip tests passed by

mid-June 2009. With this platform we ran all the

chips (which had been blindly packaged over three

rounds) through 177 tests, which identified 20% as

having defects. All failures were isolated to one tile;

no chip was completely nonfunctioning.

We encountered another pitfall while verifying

an SSM’s timing, rated at 188 MHz. The FPGA-based

MC could only be synthesized to run at 10 MHz, and

SSM’s I/O division could only go as high as 8:1,

limiting our BEE2-supported tests to 80 MHz. Early

tests without the BEE2 (via JTAG configuration and

only on-chip memories) validated SSM’s speed, and

later steps removed the BEE2 limitation by introduc-

ing buffers.

The system was declared a success after exten-

sive single-chip tests found no logic errors. Table 1

shows bringup costs for tasks that were not com-

pleted in-house. Items in italics show costs that were

incurred after the initial ‘‘success’’ point, when more

chips were bonded and more boards built. The four-

chip system was only a secondary goal, and many

aspects of the system had never been tested during

simulation, because it took too long to simulate a

32-processor system. For example, we had never

written or tested software for configuring multiple

chips from a single processor. Despite these chal-

lenges, and less time devoted to this system, we suc-

cessfully ran 32-processor applications in multiple

Figure 4. The four-chip (32 CPU) test system, which utilized the BEE2’s
four ‘‘user’’ FPGAs as well as its ‘‘control’’ FPGA. The components in the
dashed box were duplicated for each chip.

November/December 2012 5

memory modes, concluding with 32-processor trans-

actional memory tests in October 2010.

Effectiveness of debugging and
test features

Considering that the SSM’s bringup started

‘‘from scratch,’’ yet cost under $20,000 (plus the

cost of an engineer for one or

two (wo)man-months), the

bringup process went remark-

ably smoothly, because of sever-

al key factors. The strategy of

simplifying the daughter card

was crucial, as despite its sim-

plicity, the first hand-assembled

daughter card had many sold-

ering shorts and opens. Once

the first chip was deemed suc-

cessful, the cost of having a sec-

ond run of boards assembled by

professionals at AlphaEMS was

justified, yet even there, design

simplicity reduced costs and the

possibility of errors. The BEE2

platform, with its host processor

running Linux, we quickly

ported our simulation environ-

ment and allowed remote

access to the machine (even to

researchers at other institu-

tions), with little effort. Note

that, had the BEE2 not been

available, we could have based

a similar effort around one of

the many FPGA prototyping/

emulation boards available in

industry.

Of the many on-chip debug

features, several proved inval-

uable both to functionality and

to ease of bringup. First, as in-

dustry knows all too well, a

working JTAG system is essen-

tial. Because registers were

mapped to the Because the

Tensilica processor’s trace

ports were address mapped,

JTAG let us read any processor’s

current PC. This helped diag-

nose situations when a processor was in an ex-

ception handler, or stalled on a blocking operation.

JTAG-readable processor instruction traces were

invaluable for tracing buggy execution, usually

due to configuration problems. Finally, the EXTEST

and SAMPLE tests enabled by the JTAG bound-

ary scan were critical for diagnosing shorts and

opens in the first, hand-assembled board. The

Figure 5. Timeline of activities related to SSM bringup and test. The push
to verify a single chip had full applications running in a little over a month
from receiving the hardware. After the single chip was declared a
success, efforts to get the 32-processor system running were more
relaxed. The schedule had an annoying dependence: silicon !
wirebonding ! socket ! testing.

IEEE Design & Test of Computers6

General Interest

second crucial debugging feature was the flit-

logging FIFOs on the bringup FPGAs. Along with

execution traces, these proved invaluable for

identifying errors in MC configurations and NS

protocols.

However, several aspects of the system went un-

used, either because they were for ‘‘hopeless case’’

debugging scenarios that never materialized, or be-

cause the effort required to use them was dispropor-

tional to the provided benefit. While JTAG was very

useful for many things, we never used or even tested

its scan functionality. The software infrastructure for

creating and interpreting scan chains was never im-

plemented, and because we needed neither post

silicon diagnosis nor high-speed testing, scan was

not used for validation either. The ‘‘debug vectors’’

were only used in their default configuration as a

sanity check to observe processor clocks and resets

at the very beginning of testing. No situation arose

where these signals gave us more information than

debug register reads, but this is because the chip

design worked and we never had to perform worst-

case testing on a dead design. Finally, the sophisti-

cated on-chip debugger (OCD), which came free

with Tensilica’s processor, would have been useful in

program debugging, but other than aliveness tests,

we have no first-hand knowledge as to whether it

even works. The problem was that the person fami-

liar with these tools was too far removed from the

bringup team implementing them, and there was no

demand from the user base. The OCD may yet come

in handy for more sophisticated future applications.

Using Tensilica processors was still extremely ad-

vantageous due to the advanced compiler and

software support.

While the bringup was a success, we lacked

some potentially useful debugging tools, especially

for the 32-processor system. The NS that had been

extensively tested during verification was too large

for BEE2’s Virtex-II FPGAs, and the reduced version

made inaccurate simplifying assumptions, which

caused most of the errors in the four-chip system.

The most useful parts of our debugging arsenal were

the traces, both FPGA ‘‘snooping’’ traces and chip

instruction traces. However, these filled up quickly,

so were only useful for tests that failed within a short

window. While debugging the NS, we tried to cap-

ture the problems by resetting on-FPGA traces from

within the application code, but it would be far

better to create ‘‘virtualized’’ traces with infinite

depth. Trace compression techniques such as those

suggested by Daoud and Nicolici [1] implemented

even on the FPGA, could have increased the trace

effectiveness. Alternatively, a tool to pinpoint a prob-

lem and generate tests that would trigger it quickly

would be very useful. Another simple-to-construct

tool would directly compare FPGA traces with

those generated by our simulations for functional

equivalence.

Finally, there was an issue with the BEE2 board

itself, in that the hardware interface to the DDR2

memory had stuck-at faults, which were diagnosed

to be isolated to our aging BEE2 board. We were able

to work around these problems with the memory

translation block, but he ability to monitor this in-

terface would have shortened development time for

the four-chip system.

DESIGNING FOR SYSTEM bringup from the start is an

important task. The small overhead of including

standardized harnesses for visibility of critical logi-

cal and electrical interfaces is well worth the cost.

While many groups (especially those building test

chips) do not have a need or budget for a custom

test or production platform, the proliferation of

FPGA emulation systems provides a tremendous

opportunity, especially if one such system is already

used and understood by the design group. Our pro-

ject leveraged the Berkeley BEE2 board, but many

other such platforms are available. The most useful

features of BEE2 were the PowerPC core which

served as our host processor, Ethernet connectivity

which allowed remote testing, and a topology

Table 1 Process Costs for the SSM Project. Items in

Italic were ‘‘Optional,’’ and Applied Only After the

Main Bringup Was Declared a Success.

November/December 2012 7

(5 FPGAs) which nicely matched our testing goals.

In addition, the BEE2 had a complete suite of devel-

opment tools. Of course, the caveat is that the test

chip must be designed with the test rig limitations in

mind, which is not ideal. For example, we had to

avoid any off-chip communication latency require-

ments and include an IO clock divider.

The main flaw with BEE2 was that it had no ob-

vious way to connect to our chip. Yet a little creati-

vity saved a lot of work. By pulling out a few DIMM

cards, we could use their sockets and, by building

‘‘riser’’ cards, we created a mechanical and electri-

cal way to connect our chip to the emulation board.

The results were impressive. In a relatively short

time, on a shoestring budget, we brought up a com-

plex 8-core chip multiprocessor and a 32-core

systemVone of the first few systems to support tran-

sactional memory in hardware. To other research

groups who may be considering a full tapeout and

bringup as a waste of funds and manpower, we

suggest that they consider leveraging a similar plat-

form and methodology, to implement their full sys-

tems. It can be done on the cheap and it is well

worth the effort. h

Acknowledgment
The authors acknowledge the support of the

C2S2 Focus Center, one of six research centers

funded under the Focus Center Research Program

(FCRP), a Semiconductor Research Corporation

subsidiary, and earlier support from DARPA. This

material is based upon work partially supported

under a Sequoia Capital Stanford Graduate Fellow-

ship and The Sands Family Foundation.

h References
[1] E. A. Daoud and N. Nicolici, ‘‘On using lossy

compression for repeatable experiments during

silicon debug,’’ IEEE Trans. Comput., vol. 60, no. 7,

pp. 937–950, Jul. 2011.

[2] C. Chang, J. Wawrzynek, and R. W. Brodersen,

‘‘Bee2: A high-end reconfigurable computing

system,’’ IEEE Design Test, vol. 22, pp. 114–125,

2005.

[3] J. Crafts, D. Bogdan, D. Conti, D. Forlenza,

O. Forlenza, W. Huott, M. Kusko, E. Seymour,

T. Taylor, and B. Walsh, ‘‘Testing the IBM Power

7 4 GHz eight core microprocessor,’’ in Proc.

IEEE Int. Test Conf., Nov. 2010.

[4] A. Firoozshahian, A. Solomatnikov, O. Shacham,

Z. Asgar, S. Richardson, C. Kozyrakis, and

M. Horowitz, ‘‘A memory system design framework:

Creating smart memories,’’ in Proc. 36th Ann. Int.

Symp. Comput. Architect. ISCA ’09, 2009.

[5] A. Grbic, S. D. Brown, S. Caranci, R. Grindley,

M. Gusat, G. G. Lemieux, K. Loveless, N. Manjikian,

S. Srbljic, M. Stumm, Z. G. Vranesic, and Z. Zilic,

‘‘Design and implementation of the NUMAchine

multiprocessor,’’ in Proc. Design Automat. Conf.,

1998, pp. 66–69.

[6] D. Josephson, S. Poehhnan, and V. Govan, ‘‘Debug

methodology for the McKinley processor,’’ in Proc.

Int. Test Conf., 2001, pp. 451–460.

[7] M. Levitt, S. Nori, S. Narayanan, G. Grewal, L. Youngs,

A. Jones, G. Billus, and S. Paramanandam,

‘‘Testability, debuggability, and manufacturability

features of the UltraSPARC-I microprocessor,’’ in

Proc. Int. Test Conf., Oct. 1995, pp. 157–166.

[8] A. Solomatnikov, A. Firoozshahian, O. Shacham,

Z. Asgar, M. Wachs, W. Qadeer, S. Richardson, and

M. Horowitz, ‘‘Using a configurable processor

generator for computer architecture prototyping,’’ in

Proc. 42nd Ann. IEEE/ACM Int. Symp. Microarchitect.,

2009, pp. 358–369.

[9] K. van Kaam, B. Vermeulen, and H. Bergveld,

‘‘Test and debug features of the RTO7 chip,’’ in

Proc. IEEE Int. Test Conf., Nov. 2005.

[10] B. Vermeulen and S. K. Goel, ‘‘Design for debug:

Catching design errors in digital chips,’’ IEEE

Design Test Comput., vol. 19, pp. 37–45,

2002.

[11] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta,

‘‘The SPLASH-2 programs: characterization and

methodological considerations,’’ in Proc. 22nd Ann.

Int. Symp. Comput. Architect. (ISCA), Jun. 1995,

pp. 24–36.

[12] T. Wood, G. Giles, C. Kiszely, M. Schuessler,

D. Toneva, J. Irby, and M. Mateja, ‘‘The test features

of the quad-core AMD Opteron microprocessor,’’ in

Proc. IEEE Int. Test Conf., Oct. 2008.

MeganWachs has interests which include shared
memory protocol synthesis and verification, crypto-
graphic hardware, and VLSI design techniques. She
is a PhD degree candidate in electrical engineering
and member of the Chip Generator group at Stanford
University, Stanford, CA. She received the MS de-
gree in electrical engineering from Stanford Univer-
sity in 2008. (e-mail: wachs@stanford.edu).

IEEE Design & Test of Computers8

General Interest

Ofer Shacham is a Postdoctoral Researcher at
Stanford University, Stanford, CA, and the founder of
Chip Genesis. His interests and expertise include
power efficient and high performance computer ar-
chitectures, and VLSI design and verification tech-
niques. He received the Masters and PhD degrees
in electrical engineering from Stanford University.
(e-mail: shacham@alumni.stanford.edu).

Zain Asgar is currently with NVIDIA Corporation
working on the design of next generation graphics
processors. He is a PhD degree candidate in elec-
trical engineering at Stanford University, Stanford,
CA, in the area of multiprocessors. (e-mail: zasgar@
stanford.edu).

Amin Firoozshahian is currently with Hicamp
Systems, researching innovative memory system ar-
chitectures. His research interests include memory
systems, reconfigurable architectures, and parallel
programming models. He is a member of both IEEE
and ACM. He received the PhD degree in electrical
engineering from Stanford University, Stanford, CA,

in 2009. (e-mail: aminf13@hicampsystems.com;
aminf13@gmail.com).

Stephen Richardson works as a research
scientist in the Chip Generator group, Stanford Univ-
ersity, Stanford, CA. He is a longtime member of both
ACM and the IEEE. He has degrees in electrical
engineering from Stanford University and the Uni-
versity of Tennessee. (e-mail: steveri@stanford.edu).

Mark Horowitz is the Chair of electrical engineer-
ing and the Yahoo! Founders Professor at Stanford,
and a founder of Rambus. His research interests
span using EE and CS analysis methods to problems
in molecular biology to creating new design meth-
odologies for analog and digital VLSI. He is a Fellow
of the IEEE and ACM and is a member of the NAE
and the AAAS. (e-mail: horowitz@stanford.edu).

h Direct questions and comments about this article
to Megan Wachs, Electrical Engineering Depart-
ment, Stanford University, Stanford, CA 94305;
wachs@stanford.edu.

November/December 2012 9

AUTHOR QUERY

No query

