Smart Memories Polymorphic Chip Multiprocessor

Ofer Shacham, Zain Asgar, Han Chen, Amin Firoozshahian, Rehan Hameed,
Christos Kozyrakis, Wajahat Qadeer, Stephen Richardson, Alex Solomatnikov,

Don Stark, Megan Wachs, Mark Horowitz
VLSI Research Group, Stanford University

ABSTRACT

The Stanford Smart Memories polymorphic chip-multipro-
cessor architecture was conceived as a unified multipurpose
hardware architecture base, capable of supporting a vari-
ety of programming models and per-application optimiza-
tions [17]. Backing the architectural claims, our team of
PhD students set out to implement this challenging design
in silicon, targeting 90nm technology. Now, with 55M tran-
sistors covering 61mm?, this is one of the most complex
chips ever fabricated in academia.

Keywords

Stanford Smart Memories, Chip Multiprocessor, Memory
System, Tensilica, Reconfigurable Design, Parallel Program-
ming Model, Architectural/Design Exploration

1. MOTIVATION FOR THE PROJECT

Academia and industry as one are aggressively moving
towards Chip Multiprocessors (CMP) as the main process-
ing unit in current and future compute platforms. Yet the
debate regarding the “right” programing model(s) for these
machines, and hence how the memory system should be
implemented, is far from being settled. While some advo-
cate streams [10, 14, 19] due to their high compute density
per Watt, streams have a more limited application space.
Others prefer Thread Level Speculation [11, 21], recently
generalized and formulated into the Transactional Memory
model [15, 12], for its broader application domain and ease
of use from the programmer’s perspective. Meanwhile, the
most prevalent general purpose platforms are still variations
of cache coherent multi-thread models [6, 18, 13].

Stanford Smart Memories is a research project that aimed
to build a single hardware platform that could support all
these programming models by creating a flexible execution
and memory system. We wanted to show that, from a
hardware perspective, the similarities between the afore-
mentioned programming models are greater than the dif-
ferences. To achieve this goal, initially we planned to create

Permission to make digital or hard copies of all or part of this work for

a configurable data-path for the processor core, and add pro-
grammability to the memory system [17]. This conceptual
design leveraged the fact that all memory models rely on
physical memory storage in proximity to the processing unit,
and on controllers that orchestrate data movements among
these repositories and to and from the main memory. In ad-
dition, most memory systems need some “state” to be associ-
ated with the data (e.g., valid bit in caches or speculatively
read/write bits in Transactional Memory), and therefore our
memory system added meta-data bits to our local storage
arrays. The differences between memory models were cre-
ated by defining the meaning of the meta-data bits, and the
protocols for the actions that need to be taken when specific
conditions occur.’ Having made these observations we de-
cided to implement this polymorphic chip multiprocessor—
the Smart Memories CMP. As we will see, some aspects of
the architecture have significantly changed along the way, in
order to allow a small design team to implement a complex
ASIC design.

As the design process began, we quickly learned that while
technology scaling had enabled the integration of an im-
mense number of transistors on one die, leading to great
CMP designs in industry, the complexity associated with
efficiently utilizing these transistors typically renders CMP
designs unrealizable in academia. In industry, a typical chip
is the product of tens to hundreds of engineers leveraging
years of accumulated methodologies. In contrast, academic
teams are much smaller and typically attempt to tackle un-
charted architectural frontiers. Moreover, if a new proces-
sor architecture is implemented, the design team must cre-
ate not only the new hardware, but also the new software
toolchain, which greatly increases the difficulty of the task.
This paper provides an overview of the chip, but mainly fo-
cuses on the approach we took to allow a small academic
team to complete this design. We strongly believe that al-
though chip design is currently very expensive, the design
and implementation of complex architectures has large value
in academia, since it makes it very hard to sweep details un-
der the rug, and we will show some of the changes in the
architecture of the machine that arose from physical imple-
mentation considerations.

The Smart Memories (SM) eight-core CMP presented here
is a fully implemented system: from an architectural simula-
tor written in C++, through complete RTL/gate simulation

personal or classroom use is granted without fee provided that copies areenvironment, to the silicon chip currently being fabricated in
not made or distributed for profit or commercial advantage and that copies 90nm technology at STMicroelectronics [3]. Four SM chips

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

! A complete analysis is out of this report’s scope, but it can
be found in this earlier paper [17].

http://www-vlsi.stanford.edu
http://www.stanford.edu

Smart Memories

B

Memory Controller D CoMnﬁgurabIe %
5 lemory
L) « D
s Quad Quad Tile : E Tile - ? - :\ ;?1 -
S 8 Crossbar
‘é Quad Quad Quad 2 R s =
<] S y y Load/Store Unit
(= £ Tile « » Tile
g Quad Quad Quad g « »

CPU CPU
Memory Controller Quad
Tile

Figure 1: Smart Memories Architecture

will be integrated together in a system instrumented with
additional FPGAs to provide full 32-core functionality. The
software layer includes a C/C-++ compiler® and runtime en-
vironments for the stream, transactional coherence and con-
sistency (TCC) [12] and multi-thread execution models.
Throughout this paper we describe the different engineer-
ing efforts that facilitated production of the Smart Memories
CMP. These include all aspects of the modern silicon pro-
cess, from high-level architecture in Section 2.1 through the
microarchitecture design in Section 2.2 and its associated
verification collateral in Section 2.3. Section 2.4 then de-
scribes the physical implementation, including both method-
ology and final silicon statistics, and Section 2.5 describes
the post-silicon testing methodology and infrastructure.

2. ENGINEERING EFFORTS

In mid-2005, the SM project’s emphasis shifted from high
level architectural study towards actual silicon implementa-
tion. In October of 2008, GDSII was streamed out to the
ST fabrication plant. With an architecture, design, verifi-
cation, implementation and software team totaling only 4
to 8 PhD students, many manpower and resource “design
choices” had to be made throughout that period, and we
emphasize these choices as we describe the Smart Memories
engineering efforts.

2.1 Architecture

From the start we knew that we needed to construct a
modular, reconfigurable architecture if we were to deal with
VLSI wire and complexity issues. In our architecture work
we initially planned to create a flexible data-path for the pro-
cessor that would support different execution modes (light-
weight threads, SIMD, etc.) [17]. However after complet-
ing much of the initial Verilog for this system, we realized
that we were never going to have enough resources to com-
plete the software support needed for this processor, and
we needed to take a different approach. As a result we de-
cided that we should focus our effort on the truly new part
of the project, the programmable memory system, and try
to leverage as much as possible existing solutions for the
rest. Figure 1 shows the block diagram of the final archi-
tecture. Rather than building our own flexible processors,
each of our Tiles now contained two Tensilica processors [9],
thus providing us with most of the software tools needed
for this project, while still allowing us to customize the
processor. The Tiles also include several modular recon-
figurable memory blocks called Mats, and a crossbar con-
necting them to the processors. Four Tiles are then con-
nected to a shared local programmable Protocol Controller
(PC), forming a Quad. The Quads are connected to each
other and to main-memory controllers using an intercon-

2Tensilica compiler instrumented with special Smart Mem-
ories TIE instruction [9].

nection network. To reduce complexity, I/Os, and area of
this first implementation, the Network Switch and Memory
Controller are mapped to a host FPGA (Section 2.5).

Leveraging Tensilica processors, SM could now focus on
the programmable memory system. This consists of the
three major blocks highlighted in Figure 1: the processors’
memory interface or Load Store Unit (LSU), the reconfig-
urable Mats and the PC. Since Tensilica enables the creation
of new instructions and its processors can generate special-
ized memory system accesses, the LSU serves as the inter-
face adapter between the Tensilica cores and our memory
system. It performs Virtual to Physical address mapping,
can generate multicast requests for set associative lookups,
and can even generate parallel accesses to different mats to
support some operations.

The second reconfigurable block is the array of Mats. Fig-
ure 2A shows a block diagram of a single Mat: each Mat in
the Tile is an array of data words and associated meta-data
bits. It is these meta-data bits that makes the memory sys-
tem flexible: meta-data bits store the status of each data
word and their state is considered in every memory access—
each access to this word can be either completed or discarded
based on the status of these bits. For example, when Mats
are configured to form caches, these bits are used to store
the cache line state, and an access is discarded if the status
indicates that the cache line is invalid. Meta-data bits are
dual ported and can be both read and updated atomically
with each access to a data word (the meta-data’s update
function is set by the Mat internal configuration). In ad-
dition, a built-in comparator and a set of pointers allow
the Mat to be used as tag storage (for cache) or even as a
FIFO. Mats are connected to each other through an Inter-
Mat Communication Network (IMCN) that communicates
control information when the Mats are accessed as a group.

The final part of our reconfigurable memory system is the
Protocol Controller. This reconfigurable engine executes se-
quences of basic operations, composed based on the mem-
ory model, to service the requests that are sent to it. These
requests include moving data (e.g., DMAs to local mem-
ories, or cache spills and refills), updating memory state
(e.g., cache coherence operations or full/empty bits for syn-
chronization), or both (e.g., committing a transaction). To
perform these tasks, it must track outstanding requests, and
enforce correct order of operations when needed. The PC is
connected to a network interface port and can send and re-
ceive requests to/from other Quads or Memory Controllers.

Mapping a programming model to the Smart Memories ar-
chitecture requires the configuration of the LSU, the Mats,
the Tile interconnect and the PC. For example, when imple-
menting a shared-memory model, memory Mats are aggre-
gated (using IMCN) to form the caches (Figure 2B), and the
Tile crossbar is configure to route the processors’ access in-
formation appropriately. The meta-data bits in tag Mats are
configured to serve as line state bits (e.g. Modified, Shared
and Exclusive), enabling the PC to act as a cache coherence
engine, which refills the caches and enforces coherence.

The Mats introduce an interesting tradeoff in risk and
performance. In 2004 we completed the implementation of
our Mat [16], to prove that the overhead of this structure
need not be large. While we had working silicon early, we
decided it was not worth the risk and design cost to use
custom circuits and cells in our ASIC. Instead we choose an
implementation that uses only standard cells, even though

Address in Meta-Data in Data in

Pointer Logic Metadat
etadata
Data Array
Aray
RMW —
Logic >
v v
o [«]
2 2
M A\
Total Meta- Data
(A) Match Data out out
(B) IMCN
Ma'ChﬂMM G“a’duwz urvna _uMM uws
Tag ~ Word 0 Word 1 Word 2 Word 3
Word 4 Word 5 Word 6 Word 7
M6) M7 M8 M9 MT0
S — —— —
Tag Mats Data Mats

Figure 2: Configurable local memory. (A) Block
diagram of the Memory Mat. (B) Example Mat
organization for a 2-way cache.

the hardware cost of the programmable memory blocks is
quite high in this approach.

2.2 Micro-Architecture Highlights

While we would like to think about the micro-architecture
of CMPs as a simple aggregation of processor IP cores, in
reality there are always adjustments to make, such that the
processor is better suited for the memory system. Tensil-
ica’s Xtensa Processor Generator allowed us to do these
modifications easily. The base Xtensa architecture is a 32-
bit RISC instruction set architecture (ISA) with 24-bit in-
structions and a windowed general-purpose register file. We
used pre-defined options such as floating-point co-processor
(FPU) and integer multiplier and divider, but we also de-
fined custom instruction set extensions using the Tensilica
Instruction Extension language (TIE) [9]. The TIE com-
piler generates a customized processor, taking care of the
low-level implementation details such as pipeline interlocks,
operand bypass logic, and instruction encoding. In addi-
tion, Tensilica’s Processor Generator produces customized
software tools: C compiler, linker, debugger, and applica-
tion libraries, significantly reducing design time and effort.

For the micro-architecture of the flexible memory system
controller, we decided to take a “RISC” like approach: in-
stead of providing complex pre-defined operations, we pro-
vided a small number of basic operations and implemented
complex data and state manipulations by executing a set
of these basic operations. Unfortunately we could not liter-
ally use a RISC processor, since such a solution would not
match the latency, throughput and power constraints of the
system.

Figure 3 illustrates the internal organization of the Pro-
tocol Controller. The execution core consists of three major
units: the Tracking and Serialization (T-Unit) serves as the
entry point to the execution core of the controller. It stores
and retrieves information of outstanding memory requests
using either the Miss Status Holding Registers (MSHR) (for
memory operations that must enforce ordering), or the Un-
cached Status Holding Registers (USHR) (for non-ordered

DMA To/From Tile Memory Mats
T-Unit] S-Unit] D-Unit
(Tracking & Serialization) (State update) > (Data movement)

MSHR | | USHR —»{ INT-Unit ‘

le -
(interrupt)

Processor Interface : Network Interface

To/From Tile To Tile
Processors

To/From
Interrupt interface Network

Figure 3: Protocol Controller micro-architecture

operations). The State Update (S-Unit) performs read, writes
and manipulation of the state information associated with
data blocks (e.g., cache tags and cache line state). It there-
fore has a dedicated port to the Tiles’ memory Mats. Fi-
nally, the Data Movement Engine (D-Unit) provides neces-
sary functions for reading and writing data blocks from the
Mats into an internal storage structure (Line Buffer). The
controller is also equipped with independent DMA channels,
which are programmable request generator engines.

This approach works well because across many different
memory models, the functions of all protocol controllers re-
main very similar: at their core all protocol engines track
and move data. One can recognize such similarity at two
levels: at the high level, many protocol actions that imple-
ment a memory model have the same conceptual function-
ality. At a lower level, the hardware operations that are
combined to form the protocol actions are the same and can
be categorized into five different classes: Data/State read
and write, communication, ordering, tracking, and state in-
formation interpretation. The abstractions and instructions
used by this controller are described in more detail in [§].

2.3 Logic Verification

Seven separate verification environments accompanied the
design to enable verification even when the design phase
was far from completed. At the lowest level, we started
with an environment to stress-test the Memory Mat RTL,
by writing a C++ reference model and instantiating both
inside a simple Verilog testbench. We used random inputs
and checked the RTL outputs against the C++ model.

We created the final six verification environments for test-
ing at the Tile level (two processors and local caches), the
Quad level (eight processors, protocol controller, complete
memory system), and the Four-Quad level (32 processors,
network switch, and up to four memory controllers). These
environments were written mostly in OpenVera [22]. In cases
where key RTL components were still missing (such as the
Tile level environment that lacked the protocol controller’s
RTL), we used the architectural C++ simulator to provide
any missing functionality. At each level of complexity we
created a pair of environments: one “shim” environment
without processor RTL, and one including processor RTL.
In the shim environments, we used Vera to generate random
memory accesses at the processor interfaces. In the test-
benches with processor RTL, we simulated compiled appli-
cations, including Splash-2 [24] kernels. Our final regression
suite included tests at the Memory Mat, Single-Quad, and
Four-Quad level, both with and without processor RTL.

As RTL verification is becoming the biggest bottleneck

in today’s chip design efforts, and given our limited man-
power, we designed our testing environments with a focus
on reusability. Each environment level was carefully chosen
to have a well-defined interface, both from the logical and
from the physical perspective. In this way, we were able
to leverage portions of Tensilica’s processor testbench in the
Tile environment (instantiated once per processor), portions
of the Tile testbench were used in turn at the Quad level,
and the Quad testbench was used in the Four-Quad level. A
second advantage of this approach was for gate level simula-
tion. Since the verification environment was in sync with the
architectural hierarchy, very few modifications were needed
once synthesized/placed-and-routed/timing-back-annotated
netlists were available.

A major challenge we had when verifying the system was
enabling random testing. We wanted to create a reference
model for the memory system that would check that all
memory transactions were conforming with the configured
memory protocol. However, since the protocols are not de-
terministic, and different configurations of the chip could
result in drastically different correct outcomes for a series
of transactions, we decided to build a new kind of reference
model. Unlike conventional reference models, which predict
a single correct output at check time, our model relaxed this
constraint and allowed a set of possible outcomes, as long
as the design obeyed the protocol. This “Relaxed Score-
board” [20] enabled us to run strenuous random vectors on
the design to cause arbitrations, back-to-back misses, un-
usual timings of operations, etc. We used this tool in the
Single-Quad and Four-Quad environments, with and with-
out processor RTL, and found many design errors even when
self-checking diagnostic tests were passing.

In parallel with our software simulations, we made use of
a BEE2 Board [7] to prototype our design on FPGA. Be-
cause the fully reconfigurable chip was too large, even when
split up across multiple FPGAs on the board, we hard-coded
configurations before FPGA synthesis. We also replaced the
processors with simpler versions and only put one per tile
instead of two. We then let the synthesis tool strip away
irrelevant logic. In this way we could fit one tile per FPGA,
with the protocol controller and memory controller on a sep-
arate FPGA. Following this methodology, we were able to
run more benchmarks on the FPGA much faster, and with
much larger data sets, than was feasible in simulation.

2.4 Physical Implementation

Conceptually, physical implementation comes after the
logic design and verification phase has been completed. How-
ever, in reality these two efforts are interlocked, since the
physical implementation process provides feedback regard-
ing the feasibility of the logic design. Often, changes in
architecture and logic design have to be made, especially
when the design team does not have a lot of experience. As
a result, we started physical design more than a year before
tape-out, and well before the logic design was complete.

Early in the process, we established that the critical tim-
ing path is between the Mats and the processor. Specif-
ically, whenever the processor loads a value from a Mat,
it expects the result value within two clock cycles. If the
value is not available (e.g., cache-miss) the processor must
be stalled. This means gating the processor clock at least
half a cycle before it reaches the positive edge, due to the
clock tree propagation delay. In order to improve the phys-

u|“ununnlullnunmum|inulnnnﬂnmlnm’inm||munnnnnllmllmm'

eS0T d
NN

| Tile 3

3
e

3
Sk Protocol

Controller

P1 #
XBar Reg

Figure 4: Smart Memories Die Plot and Floorplan

ical implementability without adding more pipeline stages,
thus compromising performance, the entire processor core
was moved to the negative clock edge. This gave the clock
stall logic an entire clock cycle rather than a half, and sig-
nificantly improved timing closure. We were able to do this
because Tensilica has good margin in their address genera-
tion pipeline stage.

A similar trade off exists on the silicon boundaries, be-
tween the relatively slow I/Os and the much faster on-chip
logic. Therefore, SM contains an adjustable I/O timing
mechanism: Four fixed ratios of 1,%,% and % of the core
clock frequency are allowed for the 10 rate control and skid
buffers accommodate for the clock domain crossings. The
I/0 rate control logic allows the design to run quickly even
if there are any unforeseen issues with the off-chip interface.

With feedback being so critical, in order to enable a small
team to manage and implement a relatively complex design,
we adopted a top-down design-flow methodology. Logical hi-
erarchies were preserved, and physical partitions were estab-
lished to keep sub-blocks within reasonable complexity. This
allowed the sub-blocks to be implemented and optimized in
parallel, thus reducing tool run-time and improving design
feedback turn-around time. While tools work well when one
knows how to use them, new teams frequently run into tool
problems. We were not different, but were very fortunate
that one team member also works at Synopsys™.

Along the road, the design changed many times to make
the physical design better. Some of the more interesting
changes are described next, and really have to do with cre-
ating “memory” like structures. For example, since we were
using only standard cells, the meta-data bits associated with
the Mats were implemented by flops. Initially these registers
had a controlled clock instead of an enable signal to control
write accesses. However, since there are about 48K of these
in each Tile, the clock tree synthesis tool had difficulties
when generating clocks and balancing skews. A simple fix
was to do fine grain clock gating insertion during synthesis,
while using enables for smaller groups. This made it consis-
tent with the rest of the design which had integrated clock
gating (ICG) cells used to control 8-128 flip flops.

Most of the synchronous access memory structures were
implemented using block RAMs from STMicroelectronics
(as expected). However, the design also uses a number
of asynchronous memories, such as Ternary Content Ad-
dressable Memories (TCAM) and static configuration reg-
isters. Unfortunately, our vendor-generated memories were
synchronous and the design of the TCAM and configura-

Table 1: Physical properties summary

[Attribute | Value
Die size 7.8mm x 7.8mm
Core size 7.15mm x 7.15mm

Transistor count

55million

67% (excluding block RAMs)

1.0V (core); 1.8V (1/0)

181 M H z (core); 22— 181M Hz (10)
1‘348Watt/ 1.350W¢ztt/ 1.406 Watt
Coherence TCC Stream
2% HVT; 88% SVT; 10% LVT

2% HVT; 90% SVT; 8% LVT

8 PC pos-edge chains * 7671 flops
3 Tile pos-edge chains * 7923 flops
3 Tile neg-edge chains * 9992 flops
32 chains total per Quad

384 pin custom plastic BGA

389 Total (70 core Vdd, 71 core
Gnd, 22 IO Vdd, 22 IO Gnd)

Layout density
Operating voltage
Clock speed

Total Power

Tile cells breakdown
PC cells breakdown

Scan chains

Package
IO Pins

tion memories required an asynchronous lookup, to avoid
unnecessarily stalling the system. We decided that non-
scanned flip-flop arrays best suit our needs: Since these were
mostly configuration memories, the flops-based solution en-
abled the machine to power-up to a usable state (using de-
fault set/reset values). The clock load from these flip-flops
is not substantial since they are clock gated during runtime.

Throughout the design process we also realized the im-
portance of RTL coding style on the physical quality. We
were able to improve the performance of several structures
by modifying either their RTL code or their implementation,
while not changing functionality. We also had several RTL
vs. netlist equivalence checking failures due to RTL coding
issues. These generally involved unsafe constructs such as
casex, casez and synthesis pragmas. In order to fix these
problems we completely banned the use of casex and added
assertions to the casez statements to make sure none of the
inputs were ever invalid.

Our design contains four identical Tiles making it an obvi-
ous decision to implement once and replicate. Since we had
several hundred interface wires between the Tile and PC
we wanted to efficiently allocate and align the pins across
the boundary to minimize the global routing channel re-
quirements. A rectangular structure would have yielded a
non-optimal floorplan, therefore we chose a rectilinear struc-
ture as shown in Figure 4. Unfortunately, several tool prob-
lems arose during pin assignment with non-unique rectilin-
ear blocks, and with limited manpower, manual assignment
was not an option. To overcome this obstacle, we uniquified
the Tiles for floor-planning and pin assignment. After floor-
planning was complete one of the tiles was copied into place
of the other tiles creating a non-unique, but fairly optimal,
floor-plan.

As with most physical implementation flows, several dif-
ferent tools from multiple vendors were used. We used Synop-
sys [4] Design Compiler for synthesis, and JupiterXT, IC
Compiler and Astro for physical implementation. Synopsys
Formality was used for formal verification of the RTL vs.
the netlist and netlist vs. netlist during the physical flow.
Mentor Graphics [2] Calibre was used for physical validation
after the design flow was completed.

Table 1 summarizes some of the final statistics such as
area, power consumption, operating frequency and more.

JTD|—>“§'§QQ§;¥-> PO = Pl —ee® e+ P7 —»jmo

s —l l l l

JTRST
Figure 5: Smart Memories JTAG TAPs

2.5 Design for Testability

Post-silicon validation or Bring-Up is key in any chip de-
sign, and takes on a special meaning when resources are
limited. The principal Design for Testability (DFT) goal we
set for SM was that the exact state of the machine can be
read at any point. Therefore, we used the Synopsys tool
flow to add a ScanTest mode, in which all flops in the de-
sign are serially connected in dozens of chains (as noted in
Table 1). Similarly, to enable testing of I/O and connec-
tivity, all input and output pads® can be chained into one
Boundary Scan Register (BSR). To avoid some of the design
complexity associated with these structures, our system can
scan the exact state out, but can not regain functional mode
afterwords (unless reset). The “detection but no recovery”
methodology reduces pressure on designers to avoid memory
structure corruption when in scan mode.

While scan chains are an efficient tool for validating phys-
ical implementation issues, they are cumbersome when it
comes to extraction of logic state. Therefore, the entire
physical address space of the machine is designed to also
be accessible through a JTAG test access port (TAP) con-
troller [5], supporting both read and write operations. We
leveraged the eight Tensilica processors’ JTAG TAPs by
chaining the JT'DI and JTDO signals, and distributing the
JTMS, JTCK and JTRST signals in parallel [23],practically
creating a 9-wide JTAG composite controller (Figure 5).
This method enables the use of any subset of JTAG TAPs
in parallel, as well as the use of any subset of the Tensil-
ica On-Chip-Debuggers (OCDs) [23], while keeping the I/O
pin count minimal. In addition, for key debug signals (e.g.,
Tile_req, PC_ack, mat_select, etc.), a 12-bit bus, which can
select any of 384 unique signals, was added. These signals’
timing constraints were relaxed since they are used only in
debug mode where clock frequency is reduced.

Special care and thought were given to the power-on/reset
sequence as this can be Achilles’ heel of any design, and all
the more so in a reconfigurable design. Two signals, Reset
and DisableBootProc, control Smart Memories’ configura-
tion and boot sequence. A positive edge on Reset places
Smart Memories in its default configuration—caches dis-
abled, instructions fetched directly from off-chip, etc.—and
starts running one of the eight on-chip processors, known as
the boot processor. The boot processor can then provide fur-
ther configuration of the chip, say for a TCC or streaming
memory model, and is able to turn on and off any and all of
the other seven processors. Note that once the chip is run-
ning, any of the eight processors can control and configure
itself and/or any of the other seven processors on the chip.

The DisableBootProc signal allows further control of the
boot sequence. With DisableBootProc in its normal OFF
position, the boot processor is enabled and boot proceeds
as outlined above. With DisableBootProc ON, however,
posedge Reset still configures the chip, but the boot proces-
sor remains off and nothing runs. In this state, for testing

3With the exception of JTAG and Clk pads.

Figure 6: Smart Memories Testing System A) BEE2
Board B) Control FPGA C) Custom double-ended
DIMM cards replace cables D) Custom daughter
card E) Smart Memories Test Chip F) Five 40-pin
headers compatible with logic analyzer

purposes, the chip can be further reconfigured via JTAG.
Then, when DisableBootProc is again turned off, execution
continues as usual.

One problem with Power-on/Reset sequences is that they
generally have a long cycle count, thus a long simulation
time. However, they still have to be thoroughly verified.
Worse still, SM’s memory system can be configured as one
of dozens of cached, streaming and TCC configurations.
Therefore, each of our RTL simulations could run in one of
three modes. Configuration could be (a) forced by simula-
tor into internal registers (fastest); (b) handled by executing
boot processor instructions; (c) inserted by JTAG (slowest).
Gate level simulations were also performed using methods
(b) and (c), further boosting verification confidence levels.

With silicon in hand (expected Jan '09), we plan a bring-
up on a specially designed, yet conceptually simple, system.
As shown in Figure 6, this is a cableless system, connect-
ing each SM chip to an FPGA on a BEE2 board [7]. A
control FPGA on the BEE2 board uses its extra DIMM
slots to interface with our custom daughter-card through
double-ended DIMM cards. The DIMM cards act as 5052
transmission lines. This design enables a quick bringup of
the chip and alleviates concerns about signal integrity. Both
the double-ended DIMM cards and daughter-card were de-
signed using the Cadence Allegro toolchain [1].

3. CONCLUSIONS

Smart Memories is one of the largest and most complex
processor designs to be completely designed and implemented
at a university. To bring the concept from dream to reality
has required discipline and hard work on the part of a dedi-
cated team of students. Key to success has been an ongoing
emphasis on test and verification, effectively captured by the
motto “Test early and test often.” The design process was
made tractable by judicious decisions along the way, such
as the choice to use customized Tensilica processor cores in-
stead of fully-custom data paths, or the similar choice to use
standard-cell rather than custom memory mats. At the end
of a long road, the chip has been taped out and is in the
process of fabrication. We look forward soon, finally, to test
working silicon in the lab.

4. ACKNOWLEDGMENTS

This research was supported by DARPA grant F29601-03-
2-0117, Advanced Micro Devices Inc, and Stanford Gradu-
ate Fellowships. Ofer Shacham is partly supported by the
Sands Family Foundation. We would like to acknowledge
and thank Tensilica™ for providing the processing units for

Smart Memories, and STMicroelectronics™ for fabricating
the chip. Finally, we would like to acknowledge Francois
Labonte, Ken Mai, Ron Ho and Kyle Kelley for their con-
tribution to the realization of the Smart Memories chip.

5[. REFERENCES

1] Cadence allegro PCB toolchain.

http://www.cadence.com/products/pcb.

| Mentor graphics. http://www.mentor.com/.

| STMicroelectronics. http://www.st.com/index.htm.

Synopsys. http://www.synopsys.com/.

| IEEE standard test access port and boundary-scan

architecture. IEEE Std 1149.1-2001, pages i-200, 2001.

[6] S. Adve and K. Gharachorloo. Shared memory consistency
models: a tutorial. Computer, 29(12):66-76, Dec 1996.

[7] C. Chang, J. Wawrzynek, and R. W. Brodersen. Bee2: A
high-end reconfigurable computing system. IEEE Design €
Test, 22:114-125, 2005.

[8] A. Firoozshahian. Smart Memories: A Reconfigurable
Memory System Architecture. PhD thesis, Stanford
University, 2009.

[9] R. Gonzalez. Xtensa: a configurable and extensible
processor. Micro, IEEE, 20(2):60-70, Mar/Apr 2000.

[10] M. Gschwind. Chip multiprocessing and the cell broadband
engine. In CF ’06: Proceedings of the 3rd conference on
Computing frontiers, pages 1-8. ACM, 2006.

[11] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen,
and K. Olukotun. The Stanford Hydra CMP. IEEE
MICRO, pages 71-84, 2000.

[12] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, and K. P. Manohar. Transactional
memory coherence and consistency. In International
Symposium on Computer Architecture (ISCA °04), page
102, 2004.

[13] M. Hill. Multiprocessors should support simple memory
consistency models. Computer, 31(8):28-34, Aug 1998.

[14] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and
B. Khailany. The imagine stream processor. Computer
Design, International Conference on, 0:282, 2002.

[15] J. R. Larus and R. Rajwar. Transactional memory.
Synthesis Lectures on Computer Architecture, 1(1):1-226,
2006.

[16] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and
M. Horowitz. Architecture and circuit techniques for a
1.1-GHz 16-kb reconfigurable memory in 0.18u CMOS.
Solid-State Circuits, IEEE Journal of, 40(1):261-275, 2005.

[17] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz. Smart memories: a modular reconfigurable
architecture. Computer Architecture, 2000. Proceedings of
the 27th International Symposium on, pages 161-171, 2000.

[18] P. E. McKenney. Memory ordering in modern
microprocessors, part I and II. Linuz J., 2005(136/7), 2005.

[19] J. Owens. Streaming architectures and technology trends.
In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses,
page 9, New York, NY, USA, 2005. ACM.

[20] O. Shacham, M. Wachs, A. Solomatnikov,

A. Firoozshahian, S. Richardson, and M. Horowitz.
Verification of chip multiprocessor memory systems using a
relaxed scoreboard. Microarchitecture, 2008. The 41st
Annual IEEE/ACM International Symposium on, 2008.

[21] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The
stampede approach to thread-level speculation. ACM
Trans. Comput. Syst., 23(3):253-300, 2005.

[22] Synopsys, http://www.open-vera.com/. Open Vera.

[23] Tensilica. Tensilica On-Chip Debugging Guide. 2007.

[24] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations. Computer Architecture, 1995. Proceedings.
22nd Annual International Symposium on, pages 24-36,
Jun 1995.

(2
(3
[4
5

	Motivation For The Project
	Engineering Efforts
	Architecture
	Micro-Architecture Highlights
	Logic Verification
	Physical Implementation
	Design for Testability

	Conclusions
	Acknowledgments
	References

