
Micro Load Balancing in Data Centers with DRILL

Soudeh Ghorbani§ Brighten Godfrey§ Yashar Ganjali# Amin Firoozshahian*

§University of Illinois at Urbana-Champaign #University of Toronto *Intel

Abstract
The trend towards simple data center network fabric strips
most network functionality, including load balancing capa-
bilities, out of the network core and pushes them to the edge.
We investigate a different direction of incorporating mini-
mal load balancing intelligence into the network fabric and
show that this slightly smarter fabric significantly enhances
performance. We provide a very simple in-network load bal-
ancing scheduling algorithm called DRILL which is purely
local to each switch. DRILL leverages local load sensing
and randomization concepts to distribute load among mul-
tiple paths. Through simulation, we show that this simple
approach outperforms CONGA, a recent global edge-based
load balancing scheme for data centers. We also formally
prove the switch-level stability and throughput-efficiency of
DRILL’s scheduling algorithm.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
Data centers are overwhelmingly built as topologies that

are characterized by large path diversity such as Clos net-
works (Figure 1) [18, 7, 19, 27, 23, 5, 24, 27, 4]. A criti-
cal issue in such networks is the design of an efficient algo-
rithm that can evenly balance the load among available paths.
While Equal Cost Multi Path (ECMP) is extensively used
in practice [19], it is known to be far from optimal for effi-
ciently exploiting all available paths [19, 7, 11]. Data center
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
HotNets-XIV, November 16 - 17, 2015, Philadelphia, PA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4047-2/15/11 ...$15.00
DOI: http://dx.doi.org/10.1145/2834050.2834107.

measurement studies, for instance, indicate that a significant
fraction of core links regularly experience congestion despite
the fact that there is enough spare capacity elsewhere [8].

Many proposals have recently tried to address this need
[7, 19, 6, 15, 11]. Aligned with the recent trend of mov-
ing functionality out of the network fabric [12], these pro-
posals strive to delegate load balancing to centralized con-
trollers [28, 6, 10, 13], to the network edge [7], or even to
end-hosts [19, 11]. This recent move of the load balancing
functionality is motivated largely by the perceived necessity
of having global congestion or load information about the
potential paths for evenly balancing the load among them [7,
28, 6, 10, 13]. Collecting global traffic information and rout-
ing based on that information could more easily be managed
at separate controllers or at the edge. A notable example
is CONGA [7], a recent in-network load balancing scheme
that gathers and analyzes congestion feedback from the net-
work at the network edge (leaf switches in Clos networks)
to make load balancing decisions. CONGA’s central thesis
is that global congestion information is fundamentally nec-
essary for evenly balancing the load.

We explore a different direction: What can be achieved
with decisions that are local to each switch? We refer to
this approach as micro load balancing because it makes “mi-
croscopic” decisions within each switch without global in-
formation, and because this in turn allows decisions on mi-
crosecond (packet-by-packet) timescales.

Micro load balancing has hope of offering an advantage
because load balancing systems based on global traffic infor-
mation have control loops that are significantly slower than
the duration of the majority of congestion incidents in data
centers (§4). It has been shown that majority of congestion
events in data centers are short-lived [8, 21]. The bulk of
microbursts that are responsible for over 90% of packet loss,
for instance, last for less than 3 microseconds [9]. Systems
that attempt to collect and react based on global congestion
information typically have orders of magnitude slower con-
trol loops than the duration of the majority of congestion
events [29, 7]. For example, even though CONGA adds
mechanisms to leaf and spine switches to assist in obtain-
ing congestion information, it still typically requires a few
RTTs (tens to hundreds of microseconds), by which time
the congestion event is likely already over. In addition, we

found that amassing macroscopic traffic information can lead
to a pitfall: feeding global traffic information to distributed,
non-coordinating sources of traffic (input ports of all the leaf
switches in CONGA) can cause them to select the same set
of least-congested paths in a synchronized manner which in
turn leads to bursts of traffic in those paths.

To study whether micro load balancing offers a viable so-
lution, we designed and evaluated DRILL (Distributed Ran-
domized In-network Localized Load-balancing). DRILL is
in essence a switch scheduling algorithm that acts only based
on local switch queue length information without any coor-
dination among switches or any controllers. Even within a
single switch, deciding how to route and schedule packets is
nontrivial. DRILL’s scheduling algorithm is inspired by the
“power of two choices" paradigm [26]. To make it practical
for packet routing within a data center switch, we extend the
classic design to accommodate a distributed set of sources
(input ports) and show that the key stability result holds in
the distributed version as well (§2, §3.2, §5). More con-
cretely, DRILL assumes that a set of candidate next-hops for
each destination have been installed in the forwarding table,
using well-known mechanisms such as the shortest paths (as
in ECMP). Next, upon arrival of each packet at any input
port, that input port, independently and with no coordination
with other input ports, compares the queue lengths of two
randomly-chosen candidate output ports and the port that
was least loaded during the previous samplings, and sends
the packet to the least loaded of these three candidates. Note
that this is unlike ECMP since the decision is based on local
load rather than static hashing of the packet header. We show
how to optimize DRILL’s parameters—number of choices
and amount of memory—so as to avoid damaging synchro-
nization effects where many input ports choose the same out-
put.

In contrast to the works that operate on a global “macro-
scopic” view of the network, DRILL’s micro load balancing
enables it to instantly react to load variations as the queues
start building up. DRILL results in dramatically better per-
formance than CONGA in heavily loaded systems (78% im-
provement in average flow completion time §4) and in in-
cast scenarios (2.5× improvement in average flow comple-
tion time §4). In addition, DRILL offers a simpler switch
implementation than CONGA since DRILL does not need to
detect flowlets or send and analyze feedback.

Presto [19], a very recent host based load balancing scheme,
offers an interesting comparison point to DRILL. Unlike schemes
with global information, Presto is congestion-oblivious. Presto
argues that the main culprit of inefficiencies in schemes like
ECMP is the coarse granularity: each flow, even a large one,
hashes all its packets onto one path. Therefore, Presto par-
titions flows into equal size chunks of 64KB, called flow-
cells, and “sprays” them in a round-robin fashion among
available paths. This can be executed by the source with
a form of source routing, releasing the network from that
burden. A key assumption in this design is that the small

1st Stage 3rd Stage

2nd Stage

(a) A 3-stage Clos network.

(b) An arbitrary switch in the first-stage of
a Clos network.

Figure 1: Clos networks.

size and size-uniformity of data units is sufficient for preserv-
ing balanced load in symmetric topologies. Our simulations
confirm that Presto outperforms CONGA in non-incast sce-
narios, but DRILL in turn performs better than Presto (§4).
DRILL’s improved performance even for identical small size
flows (Presto’s ideal setting) results from (a) the load adap-
tation of DRILL, in contrast to the load-agnostic nature of
Presto, and (b) balancing finer granularity of load: packets
vs. flowcells. We also show that DRILL has significantly
better flow completion time in an incast scenario (9.5× better
than Presto) because of its fast reaction to congestion (§4).

DRILL’s micro load balancing raises several concerns. First,
how can we deal with packet reordering that results from
load balancing at sub-flow granularities? Interestingly, we
find that in a symmetric Clos data center network, DRILL
balances load so well that packets nearly always arrive in or-
der despite traversing different paths. This is because queue
lengths have very small variance and hence packets have al-
most identical queueing delays, even under heavy load (§4.2).
Regardless, the occasional re-orderings could still adversely
affect TCP’s performance. Hence, similar to prior work [15,
19], we deploy a buffer under TCP to restore correct or-
dering of packets. Practical challenges of deploying such a
technique are solidly addressed and solved by Presto [19].
Compared to Presto, DRILL causes significantly less fre-
quent out of order delivery of packets, shorter buffers, and
smaller buffering latencies (§4.2).

The second concern is that load-based scheduling algo-
rithms within a switch could result in instability and hence
low throughput [25]. Therefore, we formally prove DRILL’s
switch-level stability and show that it guarantees 100% through-
out for admissible traffic (§5).

Third, is DRILL’s micro load balancing sufficient alone,
or is some macroscopic information necessary? Our goal
in this short paper is to demonstrate that micro load balanc-
ing can achieve much better performance than schemes that
use more global information, and indeed DRILL achieves
this with no global information whatsoever. For topologi-
cal changes such as link failures that reduce the number of
paths, however, it is likely that more global path planning is
necessary. Since these changes, unlike congestion, happen
in slow time scales [17], leveraging existing distributed or
centralized topology-information dissemination techniques
might be sufficient to augment DRILL. We leave the study
of such techniques for future work.

In summary, our results strongly indicate that micro load
balancing belongs in the data center fabric to achieve the
key goal of high performance traffic delivery; and that a sig-
nificant and interesting question for future research is when
and how micro load balancing and macroscopic information
should be combined to get the best of both worlds.

2. RELATED WORK
The Power of Two Choices: DRILL is inspired by the

seminal “power of two choices" work on using randomized
load-sensitive algorithms for load balancing [26]. Mitzen-
macher shows that in the supermarket model, with a sin-
gle input queue and many output queues, the load balancing
performance greatly improves with using a small amount of
choice, e.g., d = 2, over random placement d = 1, and
deploying a single unit of memory along with random sam-
pling to save the identity of the output queue with the shortest
queue length from the previous time slots guarantees stabil-
ity [26]. Central to this design is having one arbiter responsi-
ble for balancing the load among multiple servers [26]. The
ideal load balancing approach with optimal performance in
this model, for instance, is to have the single arbiter com-
pare the length of all queues before making load balancing
decisions for each packet.

In large scale networks with high transmission rates, de-
ploying a central arbiter to make load balancing decision for
each packet faces great scalability challenges and even in
highly optimized situations could cause reduction in through-
put [28]. Ideally, we would like to make this approach com-
pletely distributed: whenever a packet arrives at any input
port, that input port, independently and with no coordination
with other input ports, assigns the packet to the least loaded
of d randomly chosen output queues, where d � N (N is
the number of output ports).

This very simple distributed extension, however, while ideal
for scalability and simplicity of design, could have a vastly
different performance compared to the original model, given
that the load balancing decisions of different sources can in-
terfere with each other. As a simple illustrative example,
consider Figure 1 (b): If all input ports independently exe-
cute the ideal algorithm in the supermarket model by com-
paring the length of all output queues, they could all direct

their packets to the same output resulting in huge bursts and
load imbalance in the network (more in §3.2). It is therefore
not obvious what guarantees of the original model remain
valid under the distributed adoption.

Via extensive simulations with various workloads and switches
of various sizes, we show that having two samples not only
balances the load near-optimally (standard deviation of queues
always remain small), but also, unlike the original model,
performs more efficiently than having a large number of sam-
ples (§3.2). Intuitively, this results from the reduced risk of
many input queues making identical choices, overwhelming
one output port while leaving others underutilized.

Load Balancing in Data Centers: Recent works attribute
the poor performance of ECMP to two key factors: (a) its
lack of global congestion information, and (b) hash collision
when there are large flows. In the first group, Planck presents
a fast network measurement architecture that enables rerout-
ing congested flows in milliseconds [29]. Fastpass positions
that each sender should delegate control to a centralized ar-
biter to dictate when and through which path each packet
should be transmitted [28]. Hedera [6], MicroTE [10], and
Mahout [13] re-route “elephant” flows to compensate for the
inefficiency of ECMP hashing them onto the same path.

In the second category, Presto argues that in a symmetric
network topology where all flows are “mice”, ECMP pro-
vides near optimal load balancing [19]. Presto then divides
flows into equal-size “flowcells” at the hosts. The hosts then
proactively route the cells via source routing. They also de-
ploy a centralized controller to react to occasional asymme-
tries in topology such as failures. Other efforts in this cate-
gory include dividing flows into “flowlets” [20, 7] and bal-
ancing flowlets instead of flows, or per-packet spreading of
traffic in a round robin fashion [11, 15]. Presto’s choice of
flowcells (64KB pieces of flows) is motivated by the fact that
flowlets are coarse grained, and is dictated by the practical
challenges of performing per-packet load balancing in the
hosts. The assumption among the work in the second cat-
egory is that ECMP’s inefficiency is mainly caused by the
large flows, and therefore could be addressed by hosts split-
ting flows into small chunks and routing them separately in
a proactive manner, with no need for congestion feedback.

CONGA takes a hybrid approach by both splitting traf-
fic into flowlets and using in-network congestion feedback
mechanisms to estimate load and allocate flowlets to paths
based on the congestion feedback. Their main thesis is that
efficient load balancing requires global information. Our ex-
periments indicate that DRILL’s micro load balancing out-
performs these proposals, in symmetric topologies.

3. DESIGN AND ALGORITHMS
In this section, we first explain our assumptions before for-

malizing our algorithms and showing that while having two
choices is critical to efficiency of our algorithms, having too
many choices (i.e., d� 2) degrades performance.

3.1 Assumptions and model

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
q
u
e
u
e
 l
e
n
g
th

s

Number of samples

m=1
m=2
m=3

m=10
m=20

 4

 5

 6

 7

 8

 9

 10

 11

 0 5 10 15 20 25 30 35 40 45 50

A
v
g
.
q
u
e
u
e
 l
e
n
g
th

s

Number of samples

m=1
m=2
m=3

m=10
m=20

Figure 2: Setting parameters.

We consider an M × N combined input output queued
switch with FIFO queues in which the arrivals are indepen-
dent, i.e., arrivals at each input are independent and iden-
tically distributed (i.i.d) and arrival processes at each input
are independent of arrivals at other inputs, and arriving pack-
ets could be forwarded to any of the N output ports. Traffic
is also assumed to be admissible, i.e.,

∑M
i=1 δi ≤

∑N
i=1 µi,

where δi is the arrival rate to input port i (1 ≤ i ≤ M) and
µj is the service rate of output queue j (1 ≤ j ≤ N).

We place no restriction on the heterogeneity of arrival
rates or service rates. These rates could be different and
could dynamically change over time. Particularly, we focus
on the more interesting and more challenging case where ser-
vice rates could vary over time because of various reasons
such as failures and recoveries that are common in data cen-
ters [17].

3.2 Algorithms: (d,m) scheduling policies
We consider randomized scheduling in which, upon each

packet arrival, the input port chooses d random outputs out
of possible N queues, finds the queue with minimum occu-
pancy between these d samples and m least loaded samples
from previous time slot, and routes its packet to that port.
Finally, the input port updates the contents of its m mem-
ory units with the identity of the least loaded output queues.
Such policies are called (d,m) policies, hereafter.

3.3 Setting the right parameters: the pitfalls
of choice and memory

We show in §5 that for stability it is necessary to set m ≥
1. Our experiments with various loads and different network
sizes show that while there is a significant improvement in

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

C
D

F

All flow completion times [sec]

DRILL
CONGA
Presto

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Mice flow completion times [sec]

DRILL
CONGA
Presto

Figure 3: Flow completion time.

the load balancing performance for d > 1 compared to d =
1, increasing d and m to values� 2 and� 1, respectively,
degrades the performance. The reason, as explained earlier,
is that the larger number of random samples or memory units
makes it more likely for a large number of input ports to
simultaneously select the same output port.

Figure 2 demonstrates this for a 48-port switch under 100%
load1. We measure average standard deviation of output queue
lengths (an ideal load balancing scheme should be able to
persistently preserve low standard deviation of queue lengths),
queueing delay, average queue lengths and throughput over
10 trials. We observe optimal performance for d � N
schemes for this setup and with other switch sizes (32-port
and 256-port) and different loads (10% to 100%). In our ex-
periments, we use the (2, 1) scheme.

4. SIMULATIONS
We measure the flow completion time and throughput un-

der DRILL, CONGA, and Presto via simulation.
We use the OMNET++ simulator [3], the INET frame-

work [1] and the Network Simulation Cradle library which
contains real-world TCP implementations taken from Linux
2.6 [2] for our experiments. We use the INET’s Ethernet
Switch and Standard Host modules that implement
regular Ethernet switches and hosts with standard network-
ing stacks, and add DRILL, CONGA, and Presto functional-
ities to them. The topology used in our experiments is a Clos
network with 4 and 6 leaf and spine switches respectively,
and 16 hosts attached to each leaf switch. A heavy-tailed
distribution is used for generating flow sizes, with median
flow size of 1KB similar to prior works [7, 14]. Hosts run
two TCP applications each. Similar to [7], each TCP con-
1More experimental details in §4.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

C
D

F

All flow completion times [sec]

DRILL
CONGA
Presto

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

C
D

F

Mice flow completion time [sec]

DRILL
CONGA
Presto

Figure 4: Flow completion time in an incast scenario.

nection request flows according to a Poisson process from
randomly chosen hosts under a different rack.

4.1 DRILL improves flow completion time in
heavily loaded networks

In lightly loaded networks, DRILL, CONGA, and Presto
result in almost similar performance. With flow sizes and ar-
rival rates drawn from [14], for instance, the network will be
around 20% loaded and the flow completion time in DRILL
is 30% and 11% smaller than, respectively, CONGA and
Presto (not shown in figures).

As the load increases, however, the gap between these
schemes widens. Similar to [19], we scale the distributions
by a factor of 5 to emulate a heavier workload and observe
32% and 78% improvement for flow completion time com-
pared to Presto and CONGA, respectively. The improvement
of flow completion times of mice flows (< 100KB) is re-
spectively 33% and 82%, compared to Presto and CONGA,
and 41% and 83% for elephant flows (> 10M). The CDFs of
flow completion times for all flows and for only mice flows
are shown in Figure 3.

We also observe a significant improvement in incast sce-
narios common in data centers [7]. We use a simple applica-
tion that generates incast traffic patterns by making requests
to 16 servers located under a different rack. The servers re-
ply in a synchronized fashion causing incast. There is back-
ground traffic as explained above, and servers’ flow sizes are
generated the same way. Figure 4 shows the CDF of all and
mice flow completion times. We observe 9.5× and 2.5× im-
provement compared to Presto and CONGA. The improve-
ment is more significant for mice flows (21.1× and 4.8×
compared to Presto and CONGA), but is negligible for ele-
phant flows.

4.2 Out of order delivery of packets
Well-balanced load and extremely low variance among queue

lengths with DRILL imply that it rarely causes re-ordering of
packets. In lightly and moderately loaded systems, usually
transmission delays of consecutive packets are sufficient for
making them be delivered in order. In our experiments, we
observe no packet re-ordering under low load. As the load
increases, however, hosts occasionally receive out of order
packets. Such packets are buffered and re-ordered in DRILL
before passing them to TCP. In the experiments of the pre-
vious section with heavy load (Figure 3), we observe around
0.02% of packets (2 packets in every 10,000 packets) being
delivered out of order.

We observe about 2 times more packets being delivered
out of order with Presto (0.04%) despite the fact that one of
their main motivations of balancing “flowcells” (rather than
packets) is to avoid excessive out of order delivery of pack-
ets. Moreover, when there is any packets being buffered,
most often, there is only one packet buffered with DRILL
(median buffer size = 1), and on average, the buffered pack-
ets spend 8µsec. in the buffer. With Presto, however, the
median buffer size is 5, and buffered packets spend 22µsec.
in the buffer before being passed to TCP.

We observe similar trends in the incast scenario (Figure
4). With DRILL, 0.01% of packets arrive out of order; the
median buffer size is 2, and the average buffering latency
for the few out-of-order packets is 23µsec.. Under Presto,
12 times more packets (0.12% of packets) are delivered out
of order, the median buffer size is 26, and it adds 74µsec. of
delay to the buffered packets to restore their correct ordering.

4.3 Turning flows into equal-size mice is not
enough

A key assumption in some recent load balancing propos-
als, is that turning flows into equal size pieces is enough for
achieving optimally balanced load in symmetric topologies
[19, 11, 15]. Presto, for instance, divides flows into flowcells
and routes each flowcell in a round robin fashion, irrespec-
tive of congestion feedback,

We try to test this hypothesis by measuring various load
balancing performance metrics (queue length standard devi-
ation, average queue length, latency, throughput) when flows
have exactly identical sizes, under DRILL and Presto. Our
results show significant improvement in balancing the load
(substantially lower standard deviation of queues), and con-
sistent and higher throughput under DRILL compared to Presto
even for identical size flows in symmetric topologies (the
ideal case for Presto). Queue length standard deviation, for
instance, is about three orders of magnitude larger under
Presto compared to DRILL in a symmetric system with 100%
load (Figure 5; error bars show 5th and 95th percentiles).

The improvement comes from the congestion-aware na-
ture of DRILL and balancing the load in finer granularity
(packets instead of flowcells).

5. DRILL GUARANTEES STABILITY
In this section, we first prove that purely randomized al-

gorithms without memory, i.e., (d, 0) schemes are unstable,
before proving the stability of (d,m) schemes for d,m > 0.

5.1 Instability of random sampling without mem-
ory

First, we consider the (d, 0) policy, i.e., the algorithm in
which every input port chooses d random outputs out of pos-
sible N queues, finds the queue with minimum occupancy
between them and routes its packet to it. By Theorem 1,
we prove that such algorithm cannot guarantee stability, i.e.,
the expected length of the output queues can grow without
bound.

THEOREM 1. For admissible i.i.d. parallel arrival pro-
cesses, (d, 0) policy cannot guarantee stability for any arbi-
trary number of samples d, where d is less than the number
of outputs.

PROOF. Let δi be the arrival rate to input port i, and µj

be the service rate of output queue j. Now consider output
queue N . For any input port, the probability that it chooses
output queue N as a sample is d

N . So, maximum arrival rate
to queue N is d

N ×
∑M

i δi. Thus, the minimum arrival rate
to the remaining N − 1 output queues is

ζ =

M∑
i

δi −
d

N
×

M∑
i

δi = (1− d

N
)×

M∑
i

δi.

Clearly, if ζ is larger than the sum of the service rates of these
N − 1 queues, the system will be unstable.

It should be noted that the argument does not hold: (a)
when there are some restrictions regarding the arrival or ser-
vice rates, like when the service rates are equal, or (b) when
d = N . These two special cases, however, are of little in-
terest, since the former opts out some admissible patterns of
traffic, and the latter nullifies the benefit of randomization
and as shown in §3.2 results in bursty and unbalanced load.
The results of our experiments suggest that the system will
perform well with d� N .

5.2 Stability of random sampling with mem-
ory

In §5.1, we showed that randomized policy cannot guar-
antee stability without using unit of memory. Similar to [25]
and using the results of Kumar and Meyn [22], we prove that
DRILL’s scheduling algorithms are stable for all uniform and
nonuniform independent arrival processes up to a maximum
throughput of 100%.

THEOREM 2. (1, 1) policy is stable for all admissible i.i.d.
parallel arrival processes.

To prove that the algorithm is stable, we show that for an
M × N switch scheduled using the (1, 1) policy, there is a

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

[%
]

Load [%]

DRILL
Presto

 0.1

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
q
u
e
u
e
 l
e
n
g
th

s

Load [%]

DRILL
Presto

Figure 5: Turning flows into equal-size mice is not
enough.

negative expected single-step drift in a Lyapunov function,
V. In other words,

E[V (n+ 1)− V (n)|V (n)] ≤ εV (n) + k,

where k > 0 and ε > 0 are some constants.
We do so by defining V (n) as:
V (n) = V1(n) + V2(n), where V1(n) =

∑N
i=1 V1,i(n),

V1,i(n) = (q̃i(n)− q∗(n))2, and V2(n) =
∑N

i=1 q
2
i (n).

qk(n), q̃i(n) and q∗(n), respectively, represent the length
of the k-th output queue, the length of the output queue cho-
sen by the input i, and the length of the shortest output queue
in the system under (1, 1) policy, at time instance n. Details
of the proof are included in [16].

6. CONCLUSION
In contrast to the currently pervasive approach of balanc-

ing the load based on global and macroscopic view of traffic,
we explore an alternative approach of micro load balancing:
enabling the network fabric to make load balancing decisions
at microsecond time scales based on traffic information lo-
cal to each switch. Our experiments show that our simple
provably-stable switch scheduling algorithm, DRILL, out-
performs the state-of-the-art load balancing schemes in Clos
networks, particularly under heavy load. We leave the inves-
tigation of micro load balancing in other (especially asym-
metric) topologies to future work.

Acknowledgments
We would like to thank the anonymous reviewers and An-
duo Wang for their feedback. We gratefully acknowledge the
support from NSF grant 1423452. Soudeh was supported by
a VMWare Graduate Fellowship.

7. REFERENCES
[1] INET Framework. https://inet.omnetpp.org/.
[2] Network Simulation Cradle Integration. https://www.nsnam.

org/wiki/Network_Simulation_Cradle_Integration.
[3] OMNeT++ Discrete Event Simulator. https://omnetpp.org/.
[4] ONS 2015 Keynote: A. Vahdat, Google, 2015.

www.youtube.com/watch?v=FaAZAII2x0w.
[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity

data center network architecture. In CCR, 2008.
[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, 2010.

[7] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese, et al.
CONGA: Distributed congestion-aware load balancing for
datacenters. In SIGCOMM, 2014.

[8] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In IMC, 2010.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data
center traffic characteristics. CCR, 2010.

[10] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine
grained traffic engineering for data centers. In CoNEXT, 2011.

[11] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz. Per-packet load-balanced, low-latency
routing for Clos-based data center networks. In CoNEXT. ACM,
2013.

[12] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: a
retrospective on evolving SDN. In HotSDN, 2012.

[13] A. R. Curtis, W. Kim, and P. Yalagandula. Mahout: Low-overhead
datacenter traffic management using end-host-based elephant
detection. In INFOCOM, 2011.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee. Devoflow: Scaling flow management for
high-performance networks. In CCR, 2011.

[15] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the impact of
packet spraying in data center networks. In INFOCOM, 2013.

[16] S. Ghorbani, B. Godfrey, Y. Ganjali, and A. Firoozshahian. Micro
Load Balancing in Data Centers with DRILL. Technical report.
web.engr.illinois.edu/~ghorban2/papers/drill.

[17] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in
data centers: measurement, analysis, and implications. In CCR, 2011.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible
data center network. Commun. ACM, 54(3), 2011.

[19] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella.
Presto: Edge-based load balancing for fast datacenter networks. In
SIGCOMM, 2015.

[20] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dynamic load
balancing without packet reordering. CCR, 2007.

[21] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
nature of data center traffic: measurements & analysis. In IMC, 2009.

[22] P. Kumar and S. Meyn. Stability of queueing networks and
scheduling policies. In Decision and Control, 1993.

[23] X. Li and M. J. Freedman. Scaling IP Multicast on Datacenter
Topologies. CoNEXT, 2013.

[24] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A
fault-tolerant engineered network. In NSDI, 2013.

[25] A. Mekkittikul and N. McKeown. A practical scheduling algorithm to
achieve 100% throughput in input-queued switches. In INFOCOM,
1998.

[26] M. Mitzenmacher. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems,
12, 2001.

[27] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. PortLand: a
scalable fault-tolerant layer 2 data center network fabric. CCR, 2009.

[28] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal.
Fastpass: A centralized zero-queue datacenter network. In
SIGCOMM, 2014.

[29] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca. Planck: millisecond-scale monitoring and
control for commodity networks. In SIGCOMM, 2014.

https://inet.omnetpp.org/
https://www.nsnam.org/wiki/Network_Simulation_Cradle_Integration
https://www.nsnam.org/wiki/Network_Simulation_Cradle_Integration
https://omnetpp.org/
www.youtube.com/watch?v=FaAZAII2x0w
web.engr.illinois.edu/~ghorban2/papers/drill

	Introduction
	Related Work
	Design and algorithms
	Assumptions and model
	Algorithms: (d,m) scheduling policies
	Setting the right parameters: the pitfalls of choice and memory

	Simulations
	DRILL improves flow completion time in heavily loaded networks
	Out of order delivery of packets
	Turning flows into equal-size mice is not enough

	DRILL guarantees stability
	Instability of random sampling without memory
	Stability of random sampling with memory

	Conclusion
	References

