
..........................................................................................................................................................................................................................

RETHINKING DIGITAL DESIGN:
WHY DESIGN MUST CHANGE

..........................................................................................................................................................................................................................

BECAUSE OF TECHNOLOGY SCALING, POWER DISSIPATION IS TODAY’S MAJOR

PERFORMANCE LIMITER. MOREOVER, THE TRADITIONAL WAY TO ACHIEVE POWER

EFFICIENCY, APPLICATION-SPECIFIC DESIGNS, IS PROHIBITIVELY EXPENSIVE. THESE

POWER AND COST ISSUES NECESSITATE RETHINKING DIGITAL DESIGN. TO REDUCE

DESIGN COSTS, WE NEED TO STOP BUILDING CHIP INSTANCES, AND START MAKING

CHIP GENERATORS INSTEAD. DOMAIN-SPECIFIC CHIP GENERATORS ARE TEMPLATES THAT

CODIFY DESIGNER KNOWLEDGE AND DESIGN TRADE-OFFS TO CREATE DIFFERENT

APPLICATION-OPTIMIZED CHIPS.

......Over the past two decades, chip
designers have leveraged technology scaling
and rising power budgets to rapidly scale
performance, but we can no longer follow
this path. Today, most chips are power lim-
ited, and changes to technology scaling be-
yond 90 nm have severely compromised
our ability to keep power in check. Conse-
quently, almost all systems designed today,
from high-performance servers to wireless
sensors, are becoming energy constrained.
Years of research have taught us that the
best—and perhaps only—way to save en-
ergy is to cut waste. Thus, clock and
power gating have become common tech-
niques to reduce direct energy waste in un-
used circuits. But power is also wasted
indirectly when we waste performance.
Higher performance requirements necessi-
tate higher-energy operations, so removing
performance waste reduces energy per oper-
ation. Using multiple simpler units rather
than a single aggressive one, therefore,
saves energy when processing parallel

tasks. At the system level, this observation
is driving the recent push for parallel
computing.

Looking forward, the best tool in our
power-saving arsenal is customization, be-
cause the most effective way to reduce
waste is to find a solution that accomplishes
the same task with less work. By tailoring
hardware to a specific application, custom-
ization not only results in energy savings by
requiring less work but also improves perfor-
mance, allowing an even greater reduction of
the required energy. As a result, application-
specific integrated circuits (ASICs) are often
orders of magnitude more energy efficient
than CPUs for a given application.

However, despite the clear energy-
efficiency advantage of ASICs, the number of
new ASICs built today is not skyrocketing,
but decreasing. The reason is simple: nonre-
curring engineering (NRE) costs for ASIC
design have become extremely expensive,
and very few applications have markets big
enough to justify such costs. This uneasy

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 9

Ofer Shacham

Omid Azizi

Megan Wachs

Wajahat Qadeer

Zain Asgar

Kyle Kelley

John P. Stevenson

Stephen Richardson

Mark Horowitz

Stanford University

Benjamin Lee

Duke University

Alex Solomatnikov

Amin Firoozshahian

Hicamp Systems

0272-1732/10/$26.00 �c 2010 IEEE Published by the IEEE Computer Society

...................................................................

9



status quo is reminiscent of chip design prob-
lems in the early 1980s, when all chips were
designed by fully custom techniques. At that
time, few companies had the skills or dollars
to create chips. The invention of synthesis
and place-and-route tools dramatically
reduced design costs and enabled cost-
effective ASICs. Over the past 25 years, how-
ever, complexity has grown, creating the
need for another design innovation.

To enable this innovation, we must face
the main issue: building a completely new
complex system is expensive. The cost of de-
sign and verification has long exceeded tens
of millions of dollars. Moreover, hardware
is only half the story. To be useful, new
architectures require expensive new software
ecosystems. Developing these tools and
code is also expensive. Providing a designer
with complex intellectual property (IP)
blocks doesn’t solve this problem: the
assembled system is still complex and still
requires custom verification and software.
Furthermore, verification costs still trend
with system complexity and not with the
number of individual blocks used. To ad-
dress some of these design costs, the industry
has been moving toward platform-based
designs, where the system architecture re-
mains fixed.1 Nevertheless, although such
strategies address design costs, they don’t
provide the desired performance and power
efficiency.

Therefore, we propose rethinking how we
approach design. The key is realizing that, al-
though we can’t afford to build a customized
chip for every application, we can reuse one
application’s design process to generate mul-
tiple new chips. Every time a chip is built, we
inherently evaluate different design decisions,
either implicitly using microarchitectural and
domain knowledge, or explicitly through
custom evaluation tools. Although this pro-
cess could help create other, similar chips,
today we settle on a particular target imple-
mentation and record our solution. Our
approach embeds this implicit and explicit
knowledge in the modules we construct, en-
abling us to customize the system for differ-
ent goals or constraints, and thus to create
different chip instances. Rather than building
a custom chip, designers create a template—
a chip generator—that can generate the

specialized chip, similar to the way Tensili-
ca’s tools create customized processors
(http://www.tensilica.com).

Creating flexible, domain-specific chip
generators rather than single chip instances
lets us preserve and enhance knowledge
from past designs. We can then use that
knowledge to produce new customized solu-
tions by capturing, not only the final design,
but also the tools and trade-off analysis that
led to this design. In this approach, the
chip generator uses a fixed system architec-
ture (or template) to make both software de-
velopment and verification simpler, but its
internal blocks are flexible, with many
parameters set by either the application de-
signer or through optimization scripts.
Thus, when application designers port their
applications to this hardware base, they can
customize the software and hardware simul-
taneously. In addition, the template contains
highly parameterized modules to enable per-
vasive hardware customization. The applica-
tion developer tunes the parameters to meet
a desired specification. Then, this informa-
tion is compiled, and optimization proce-
dures are deployed to produce the final
chip. The end result of this process is a
chip with customized functional units and
memories that increase computing efficiency.

Technology scaling and the cause
of the power crisis

When considering technology scaling and
the semiconductor industry’s growth over the
past few decades, it’s almost impossible not
to begin with Moore’s law. Introduced by
Gordon Moore in 1965, this law stated
that the number of transistors that could eco-
nomically fit on an integrated circuit would
increase exponentially with time.2 Although
this law was an empirical observation, history
has shown Moore’s prediction to have been
remarkably accurate. In fact, today, Moore’s
law has become synonymous with technol-
ogy scaling.

Moore successfully predicted the expo-
nential growth of the number of transistors
on a chip. However, explaining how such
scaling would affect device characteristics
took another decade: Robert Dennard
addressed this in his seminal paper on
metal-oxide semiconductor (MOS) device

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 10

....................................................................

10 IEEE MICRO

...............................................................................................................................................................................................

CHIP DESIGN



scaling in 1974.3 In that paper, Dennard
showed that when voltages are scaled along
with all dimensions, a device’s electric fields
remain constant, and most device character-
istics are preserved.

Following Dennard’s scaling theory, chip
makers achieved a triple benefit: First, de-
vices became smaller in both the x and y
dimensions, allowing for 1/a2 more transis-
tors in the same area when scaled down by
a, where a < 1. Second, capacitance scaled
down by a (because C ¼ e(LW/t), where C
is the capacitance, e is the dielectric coeffi-
cient, L and W are the channel length and
width, and t is the gate-oxide thickness).
Thus, the charge Q that must be removed
to change a node’s state scaled down by a2

(because Q ¼ CV ). The current also scaled
down by a, so the gate delay D decreased
by a (because D ¼ Q/I ). Finally, because en-
ergy is equal to CV 2, energy decreased by a3.

Thus, following constant field scaling,
each generation supplied more gates per
mm2, gate delay decreased, and energy per
gate switch decreased. Most important, fol-
lowing Dennard scaling maintained constant
power density: logic area scaled down by a2,
but so did power: energy per transition scaled

down by a3, but frequency scaled up by 1/a,
resulting in an a2 decrease in power per gate.
In other words, with the same power and
area budgets, 1/a3 more gate switches per
second were possible. Thus, scaling alone
was able to bring about significant growth
in computing performance at constant
power profiles.

Nevertheless, power and power density
have continually increased. Figure 1 shows a
dramatic increase in processor power over
the past 20 years. The reason is a combination
of designers’ not following constant field scal-
ing exactly and creating more aggressive
designs, thereby increasing performance
more quickly than Dennard predicted.

Figure 2 shows clock frequency growth.
By the early 2000s, clocks were running 10
times faster than expected by Dennard’s
rules. Some of this performance increase
came from technology tuning; below 0.25
micron, channel lengths became shorter
than feature sizes. Designers also optimized
circuits to make faster memories, adders,
and latches, and created deeper pipelines
that increased clock frequency beyond what
Dennard had prescribed. These strategies
increased both power and power density,

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 11

AMD Phenom:
125 W

Intel Atom

Intel Core i7: 130 W

IBM Power6: 100 W

1,000

100

P
ow

er
 (

W
)

10

1
1985 1987 1989 1991 1993 1995 1997 1999

Year
2001 2003 2005 2007 2009 2011

Intel Atom

Intel

Alpha

HP PA

IBM Power

Sun Sparc

Itanium

MIPS

Power PC

AMD

Sun Niagara

Figure 1. Historic microprocessor power consumption statistics. Power consumption has increased by over two orders of

magnitude in the past two decades. However, as evidenced by the Intel Atom, there is a recent trend of lower power

processors for the growing market of battery-operated devices. (PA: Precision Architecture.)

....................................................................

NOVEMBER/DECEMBER 2010 11



but, because designs were not power con-
strained at the time, this increase was not a
problem. During this period, computer
designers wisely converted a ‘‘free’’ resource
(extra power) into increased performance,
which everyone wanted.

In the early 2000s, however, high-
performance designs reached a point at
which they were hard to air-cool within
cost and acoustic limits. Moreover, the laptop
and mobile device markets—which are bat-
tery constrained and have even lower cooling
limits—were growing rapidly. Thus, most
designs had become power constrained.

Although this was a concern, the situation
could have been manageable, because scaling
under constant power densities could have
continued as long as designers stopped creat-
ing more aggressive designs (by maintaining
pipeline depths, and so forth). However, at
around the same time, technology scaling
began to change as well. Up until the 130-nm
node, supply voltage (VDD) had scaled with
channel length. But at the 90-nm node,
VDD scaling slowed dramatically. Transistor
threshold voltage (VTH) had become so

small that a new problem arose: leakage cur-
rent. Faced with exponentially increasing
leakage power costs, VTH virtually stopped
scaling. Because scaling VDD without scaling
VTH would have had a significant negative
effect on gate performance, VDD scaling
nearly stopped as well, and it is still around
1 V for the 45-nm node.

With constant voltages, energy now scales
with a rather than a3, and as we continue to
put 1/a2 more transistors on a die, we are
facing potentially dramatic increases in
power densities unless we decrease the aver-
age number of gate switches per second.
Although decreasing frequencies would ac-
complish this goal, it isn’t a good solution,
because it sacrifices performance.

Design in a power-constrained world
In the power-constrained, post-Dennard

era, creating energy-efficient designs is criti-
cal. Continually increasing performance in
this new era requires lower energy per oper-
ation, because the product of operations per
second (performance) and energy per opera-
tion is power, which is constrained.

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 12

Intel

Alpha

HP PA

Sun Sparc

Itanium

MIPS

Power PC

Sun Niagara

10,000

Intel Core i7: 3.3 GHz

IBM Power6: 4.7 GHz

AMD Phenom:
3.2 GHz

45-nm technology:
533 MHz

1,000

100

10
1985 1987 1989 1991 1993 1995 1997 1999

Year

C
lo

ck
 fr

eq
ue

nc
y 

(M
H

z)

2001 2003 2005

Theoretical frequency scaling based on Dennard rules

2007 2009 2011

Alpha

HP PA

Sun Sparc

MIPS

Power PC

Sun Niagara

45-nm techno
533 MHz

Theoretical frequency scaling based on Dennard rules

scaling

h et
u y

e
en d

s

he eti f qu cy ca g b se on en rd le

AMDIBM Power

Figure 2. Historic microprocessor clock frequency statistics. The theoretical frequency scaling line shown results from

applying Robert Dennard’s scaling guidelines to the chronologically first processor in the graph, which would have

resulted in a clock frequency of 533 MHz at 45-nm technology. The industry exceeded Dennard’s predictions by an

order of magnitude.

....................................................................

12 IEEE MICRO

...............................................................................................................................................................................................

CHIP DESIGN



Figure 3 illustrates the new design optimi-
zation problem. Each point in this figure
represents a particular design. Some design
points are inefficient, because the same per-
formance is achievable through a lower en-
ergy design, whereas other designs lie on
the energy-efficient frontier. Each of these
latter designs is optimal because there are
no lower energy points for that performance
level. To find these points, we must rigor-
ously optimize our designs, evaluating the
different design choices’ marginal costs in
terms of energy used per unit performance
offered, and then selecting the design features
that have the lowest cost. In this process, we
trade expensive design features for options
that offer similar performance gains at
lower energy costs.

Clearly, the first step is to reduce waste in
the design. Clock gating prevents a logic
block’s gates from switching during cycles
when their output isn’t used, reducing dy-
namic energy with virtually no performance
loss. Power gating goes further by shutting
off an entire block when it’s unused for lon-
ger periods of time, reducing idle leakage
power, again at low performance costs.

After removing energy waste, further
reducing energy generally has performance
costs, and these costs increase as we exhaust
the less-expensive methods. When an appli-
cation requires greater performance, a more
aggressive, and more energy-intensive, design
is necessary. This results in the relationship
between performance and required energy
per operation shown in Figure 3, and the
real processor data of Figure 4.

In the past, the push for ever better per-
formance has seen designs creep up to the
steep part of this energy-performance trade-
off curve (for example, Pentium IV and Ita-
nium in Figure 4). But power considerations
are now forcing designers to reevaluate the
situation, and this is precisely what initiated
the move to multicore systems. Backing off
from the curve’s steep part enables consider-
able reductions in energy per operation. Al-
though this also harms performance, we
can reclaim this lost performance through
additional cores at a far lower energy cost,
as Figure 3 shows. Of course, this approach
sacrifices single-threaded performance, and
it also assumes that the application is parallel,

which isn’t always true. However, given the
power constraints, this move to paralleliza-
tion was a trade-off that industry had to
make.

Unfortunately, though, we can’t rely on
parallelism to save us in the long term, for
two reasons. First, as Amdahl noted in
1965, with extensive parallelization, serial
code and communication bottlenecks rapidly
begin to dominate execution time. Thus, the
marginal energy cost of increasing perfor-
mance through parallelism increases with
the number of processors, and will start
increasing the overall energy per operation.
The second issue is that parallelism itself
doesn’t intrinsically lower energy per opera-
tion; lower energy is possible only if sacrific-
ing performance also yields a lower energy
point in the energy-performance space of
Figure 3. Unfortunately, this follows the
law of diminishing returns. After we back
away from high-power designs, the remain-
ing savings are modest.

Further improving energy efficiency
requires considering another class of tech-
niques: hardware customization. By specializ-
ing computing platforms for the specific
tasks they perform, customization can not
only result in significant energy savings but

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 13

Performance

Parallelism

Energy-efficient
frontier

E
ne

rg
y

Figure 3. The energy-performance space. The Pareto-optimal frontier line

represents efficient designs; no higher performance design exists for the

given energy budget. The recent push for parallelism advocates more, but

simpler, cores. This approach backs off from the high-performance, high-

power points (see the arrow pointing down) and uses parallelism to main-

tain or increase performance (see the arrow pointing to the right).

....................................................................

NOVEMBER/DECEMBER 2010 13



also reduce the time to perform those tasks.
The idea of specialization is well-known,
and is already applied in varying degrees
today. The use of single instruction, multiple
data (SIMD) units (such as streaming SIMD
extension [SSE], vector machines, or graph-
ics processing units) as accelerators is an ex-
ample of using special-purpose units to
achieve higher performance and lower en-
ergy.5 To estimate how much potential
gain is possible through customization, we
need only look at ASIC solutions, which
often use orders of magnitude less power
than general-purpose CPU-based solutions,
while achieving the same or even greater per-
formance levels.

ASICs are more efficient because they
eliminate the overhead that comes with gen-
eral-purpose computing. Many computing
tasks, for example, need only simple 8- or
16-bit operations, which typically take far
less than a picojoule in 90-nm technology.
This is in contrast to the energy consumed

in the rest of a general-purpose processor
pipeline, which is on the order of hundreds
of picojoules.6 Efficiently executing these
simple operations in a processor requires per-
forming hundreds of operations per pro-
cessor instruction, so the functional-unit
energy becomes a significant fraction of the
total energy.

Although their efficiency makes building
customized chips preferable, designing them
is expensive. The design and verification
cost for a state-of-the-art ASIC today is
well over $20 million, and the total NRE
costs are more than twice that, owing to
the custom software required for these cus-
tom chips.7,8 Interestingly, fabrication costs,
though very high, account for only roughly
10 percent of the total cost today.7 That
means high design, verification, and software
costs are the primary reasons why the num-
ber of ASICs being produced today is actu-
ally decreasing,8 even though they’re the
most energy-efficient solution.

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 14

100

AMD Opteron:
1, 2, or 4 cores

Intel Core i7:
4 cores

10

1
0.00 0.01 0.10

Average Spec 2006 results × L

N
or

m
al

iz
ed

 e
ne

rg
y 

p
er

 o
p

er
at

io
n

[W
/(

no
. o

f c
or

es
 ×

 S
p

ec
06

 ×
 L

 ×
 V

D2 D
)]

1.00

Intel

Alpha

HP PA

IBM Power

Sun Sparc

Itanium

MIPS

Power PC

AMD

Intel Itanium:
1 core

Intel Core 2:
Duo, Quad

Figure 4. Historic microprocessors’ power per SPEC (Standard Performance Evaluation Corp.) benchmark score vs. perfor-

mance statistics. Performance numbers (x-axis) are the average of the single-threaded SPECint2006 and SPECfp2006

results.4 To account for technology generation, we normalized the numbers according to feature size L, which is inversely

proportional to the inherent technology speed. The y-axis shows power per SPEC score, which is a measure of energy

per operation. Energy numbers are normalized to the number of cores per chip and to the technology generation; since

E ¼ CV 2 (where E is energy, and C is the capacitance), E is proportional to LV 2. Note how the move to multicore

architectures typically sacrifices single-threaded performance, backing off from the steep part of the curve.

....................................................................

14 IEEE MICRO

...............................................................................................................................................................................................

CHIP DESIGN



Design chip generators, not chips
Part of the cost of creating new hardware

is the creation of a new set of simulation and
software tools, including a system-level archi-
tecture simulator and, often, additional
design-space exploration tools for internal
blocks. Only after the architectural and
microarchitectural design trade-offs are
well-understood do designers create opti-
mized instances, and ultimately the final
chip. In addition, new hardware typically
requires new software support, such as com-
pilers, linkers, and runtime environments.
An optimized software stack is as important
as optimized hardware, because a bad
software toolchain can easily cause an
order-of-magnitude loss in performance.9

The importance of mature software also
explains the need for software compatibility
and why a few architectures dominate.

The importance of software today raises a
key question: if the infrastructure to support a
new architecture introduces a huge overhead,
why do we treat it as disposable? In other
words, if we spend so much time and effort
on infrastructure to optimize components,
why do we freeze the design to produce
only one instance? Instead, we should be cre-
ating a system that embeds this knowledge,
and these optimization tools, inside the

design. Rather than record one output of
the design and optimization process (the de-
sign produced), the process should be codified
so that designers can leverage it for future
designs with different system constraints.
The design artifact produced becomes the
process of creating a chip instance, not the in-
stance itself. The design becomes a chip gen-
erator system that can generate many different
chips, where each is a different instance of the
system architecture, customized for a different
application or a different design constraint.

A chip generator provides application
designers with a new interface: a system-
level simulator, whose components can be
configured and calibrated. In addition, it
provides a mature software toolchain that al-
ready contains compilation tools and run-
time libraries because, even though the
internal components are configurable, the
system architecture is fixed, and some basic
set of features always exists. Consequently,
application designers can now concentrate
on the core problem: porting their applica-
tion code. Furthermore, they can tune both
the hardware and software simultaneously
to reach their goals.

Per-application customization becomes a
two-phase process (Figure 5). In the first
phase, the designer tunes both the

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 15

Program
code Architecture

parameters

S
of

tw
ar

e 
tu

ni
ng

H
ar

d
w

ar
e 

op
tim

iz
at

io
n

Performance Power usage

Chip generator

Simulator

Hardware
optimizer

and generator

(a) (b)

Architecture
parameters

Validation script Physical design

Chip generator

Simulator
Hardware
optimizer

and generator

Figure 5. Two-phase hardware design and customization using a chip generator: phase 1 (design exploration and tuning)

(a), and phase 2 (automatic generation of the RTL and the verification collateral) (b). In phase 1, the tight feedback loop of

both application performance and power consumption enables fast and accurate tuning of the design knobs and the algo-

rithm. In phase 2, the hardware is automatically generated to match the desired configuration.

....................................................................

NOVEMBER/DECEMBER 2010 15



application code and the hardware configura-
tion. The chip generator’s system-level simu-
lator provides crucial feedback regarding
performance, as well as physical properties
such as power and area. Application design-
ers can, therefore, iterate and quickly explore
different architectures until they achieve the
desired performance and power or area enve-
lope. Once the application designer is satis-
fied with the performance and power, the
second phase further optimizes the design
at the logic and/or circuit levels, and gener-
ates hardware on the basis of the chosen con-
figuration. The chip generator also generates
the relevant verification collateral needed to
test the chip functionality (because all tools
can have bugs).

A chip generator provides a way to take
expert knowledge, and more importantly,
trade-offs, specific to a certain domain
and codify them in a hardware template,
while exposing many customization knobs
to the application designer. The template
architecture provides a way to describe a
family of chips that target different applica-
tions in that domain and/or that have dif-
ferent performance and power constraints.
(Examples of application domains include
multimedia and network packet processing.
Examples of applications in the multimedia
domain are H.264 and voice recognition.
Examples of applications in the network-
packet-processing domain are regular
expressions and compression.) Thus, a
chip generator lets application designers
control their system’s hardware and soft-
ware with low NRE costs by reusing the en-
tire system framework rather than only
individual components (see the ‘‘Reconfig-
urable Chip Multiprocessor as a Limited
Generator’’ sidebar).

In some sense, a chip generator turns the
design process inside out from the system-
on-chip (SoC) methodology. In SoCs,
designers use complex IP blocks to assemble
an even more complex chip. SoC design effi-
ciency comes from using preverified IP
blocks, and then reusing them for different
final chips. However, the system architecture
and the software toolchain could vary greatly
from one SoC to another. This architectural
variance afforded by SoCs exacerbates the
verification challenge because verification

complexity is related to system-level
complexity.

In a chip generator methodology, on the
other hand, rather than fixing the compo-
nents and leaving the system architecture
open, we highly parameterize the compo-
nents and keep the system architecture
fixed. Moreover, the flexible components
can codify the trade-offs such that the appli-
cation designer can set each knob’s actual
value later, and the chip generator would ad-
just the rest of the design accordingly. The
result is that architectural variance is con-
strained at the system level, so the difficult
verification problem can be amortized over
many designs. All tools can be faulty, and
thus it’s impossible to guarantee bug-free
hardware; however, the fixed system architec-
ture lets a chip generator find bugs efficiently
by either reusing or generating system-level
verification collateral.

Is a chip generator possible?
Although a chip generator would be a

great tool to have, constructing a useful one
is quite challenging. Here, we describe
some of our early research on exploring
ways to address this challenge. This early re-
search falls into several areas. First, we want
to quantitatively understand how specializa-
tion improves efficiency. Unless the energy
reduction is significant, customization isn’t
worth the effort. Second, if customization is
worthwhile, we need to create a set of general
optimization tools that the chip generator
can use to make low-level design decisions.
This is analogous to the logical mapping
and optimization introduced by synthesis
tools in the 1980s, but at a higher level.

Another challenge is how to actually con-
struct a hierarchical generator. How do we
integrate parameters into the lower-level de-
sign to write an individual flexible module?
Next, how should we stitch these flexible
modules together to create higher-level flexi-
ble modules? Then, once we have this elabo-
ration framework, how can we efficiently
evaluate the trade-offs of the various design
knobs to automatically optimize the final de-
sign? Finally, our last research area examines
how to create a validation framework for the
chip generator that can test each produced
instance.

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 16

....................................................................

16 IEEE MICRO

...............................................................................................................................................................................................

CHIP DESIGN



Efficiency gains through customization
To better understand how customization

can improve energy efficiency, we must
first explicitly quantify the sources of over-
head in general-purpose processors; then,
we can explore methods to reduce them. As
a case study, we examined H.264 video
encoding (real-time 720p). H.264 has both
highly data-parallel and sequential parts,
making it an interesting application to
study. In addition, there are both aggressive
software and hardware implementations of
the H.264 standard, which we can use as ref-
erence points.10

On a homogeneous general-purpose chip
multiprocessor (CMP) architecture, our opti-
mized software implementation used
500 times more energy per frame than an
ASIC implementation. This energy overhead
was roughly the same for commercial imple-
mentations using x86 processors.11 Hard-
ware customizations could narrow the gap,
but we still wanted to know how much effi-
ciency gain we could achieve using general-
purpose parallelization techniques, and
which gains we could achieve using only
techniques highly tuned to a specific
task. Thus, we classified our hardware cus-
tomizations into two groups. First, we con-
sidered standard instruction-level parallelism
(ILP) and data-level parallelism (DLP) tech-
niques, including simple fused instructions.
Second, we created specialized data storage
and functional units.

In all, we compared five customization
levels, including RISC (a simple RISC pro-
cessor with no custom instructions added),
RISCþSIMDþVLIW (the same processor
with SIMD and VLIW capabilities added),
Op Fus (all of the above, plus simple fused
instructions), and Magic (which removes all
the previous optimizations, and instead uses
Tensilica Instruction Extension [TIE] lan-
guage to add custom hard blocks).

The results for co-optimization of the
H.264 code and hardware at different hard-
ware specialization levels were striking.12

General parallelization techniques improved
both performance and energy by more than
an order of magnitude. The results from
this type of customization correspond to
reported numbers from software implemen-
tations on programmable parallel processors

such as Tilera and Stream Processors.13 De-
spite these impressive gains, however, the en-
ergy required for real-time encoding was still
50 times greater than the energy required by
an ASIC implementation.

The challenge in achieving ASIC-level
efficiencies is that the narrow bit-width oper-
ations in these H.264 subalgorithms require
very little energy; much of the processing en-
ergy is spent on overhead, even when using
wide (8- to 16-operand) lanes. Our results
show that we can recover about 200 times
(of the 500 times more energy spent) by
adding large specialized instructions, which
couple specialized storage space and commu-
nication paths with specialized functional
units. These units perform hundreds of oper-
ations per instruction, with all operands
implicitly addressed from the local storage,
thus also reducing data movement.

The inescapable conclusion is that, for
computation on narrow data widths, special-
ized hardware is critical. (IBM’s commercial
wire-speed processor provides another exam-
ple of a case requiring specialized hardware,
with accelerators for cryptography, XML,
compression, and regular expression
handling.14)

Creating chip generators
To create these customized, heteroge-

neous designs, starting with a flexible homo-
geneous architecture is better because it can
make verification and software easier. To en-
able customizations, we must build the archi-
tecture’s internals from highly parameterized
and extensible modules, so that application
designers can easily shape the components,
creating heterogeneous systems tailored to
specific application needs. However, initially
creating these flexible, customizable modules
is challenging.

The idea of creating flexible modules is,
of course, not new. Both VHDL and Verilog
(post 2001) use elaboration time parameters
and generate blocks to enable more code
reuse. Generate blocks let designers write
simple elaboration programs, for which
parameters are the input and hardware com-
ponents are the output. Bluespec extended
this concept, enhancing and merging pro-
grammability into the main code rather
than limiting it to generate blocks. At the

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 17

....................................................................

NOVEMBER/DECEMBER 2010 17



block level, commercially available products
such as Tensilica’s processors, Sonics’ on-
chip interconnects, and Synfora’s PICO
(Program In, Chip Out) system generate
complete IP blocks for SoCs. However, al-
though these methods are suitable for creat-
ing individual blocks, they aren’t designed
to produce full systems. The missing piece
is how to compose these building blocks in
increasingly larger blocks until reaching the
system level.

When creating a hierarchical chip genera-
tor, various types of design parameters must
be determined. At the top level, the

application designer specifies the high-level
design architecture. Beyond these directly
controlled parameters, however, many other
parameters must still be determined. First,
design parameters in different blocks are
often linked. Thus, each flexible module
must incorporate an elaboration program to
specify how parameters in one block are
computed from the parameters of another,
whether higher or lower in the design hierar-
chy. This requires that the elaboration engine
have significant software capabilities. Fur-
thermore, there are many lower-level design
parameters whose impact on the system

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 18

...............................................................................................................................................................................................

Reconfigurable Chip Multiprocessor as a Limited Generator

A chip generator is a way to codify design knowledge and trade-offs

into an architectural template to expose many knobs to this generator’s

user, an application designer. It is, therefore, to some extent, similar to a

runtime-reconfigurable computing system in its ability to enable detailed

control of how internal units function. Whereas a reconfigurable chip is

actual silicon that is programmed at runtime, a chip generator is a virtual

superset chip that is programmed long before tape-out, such that hard-

ware can either be added or removed and only the required subset

makes it to silicon.

One such reconfigurable chip multiprocessor is Stanford Smart Mem-

ories (SSM), which first made it to silicon in March 2009. SSM has a

memory system flexible enough to support traditional shared memory,

streaming, and transactional-memory programming models on the

same hardware substrate.1,2

Figure A illustrates SSM’s hierarchical structure, which connects

two Tensilica VLIW cores3 to 16 memory mats,4 using a configurable

processor interface and crossbar to form a tile (see Figure A1).

Groups of tiles, along with a programmable protocol controller capa-

ble of implementing the different execution modes, form a quad

(see Figure A2). Quads connected to one another and to the off-

chip memories form a system of quads (see Figure A3). We achieved

flexibility primarily by adding metadata bits to the on-chip memory

mats, adding programmability at the processor interface, and most

importantly, creating the microcoded programmable protocol

controller.5

As a conceptual example, we repurpose the SSM design as a limited

chip generator by leveraging the partial evaluation capabilities of

commercial synthesis tools. Rather than dynamically writing values to

memories and registers at runtime, we set the values and make them

read-only at synthesis time. The synthesis tool then uses constant prop-

agation and folding to reduce any unnecessary logic from the constants’

cones of influence.

Configurable crossbar

Configurable load/store unit

CPU 1

Data,
instruction

Data,
instruction

CPU 0

Configurable
memory mats

(1)

Tile 0Tile 3

Tile 1Tile 2

Configurable
protocol controller

TX
/R

X

(2)

Memory controller

Memory controller

Quad

M
em

or
y 

co
nt

ro
lle

r

M
em

or
y 

co
nt

ro
lle

r

Quad

Quad

Quad

Quad

QuadQuad

Quad

Quad

(3)

Figure A. The Stanford Smart Memories (SSM) chip multiprocessor architecture: a tile (1), a quad (2), and a system of

quads (3). (Rx: receiver; Tx: transmitter.)

....................................................................

18 IEEE MICRO

...............................................................................................................................................................................................

CHIP DESIGN



isn’t functional but rather a matter of perfor-
mance and cost (sizing of caches, queues, and
so on). These parameters should be deter-
mined automatically through optimization
procedures. To this end, after the application
designer provides the chip program and the
design objective and constraints (for instance,
maximize performance under some power
and area budget), the generator engine
should use an optimization framework to se-
lect the final parameter values.

The challenge in creating the optimiza-
tion framework lies in the huge space that
must be explored. With even as few as

20 parameters, the design space could easily
exceed billions of distinct design configura-
tions. This is a problem because architects
traditionally rely on long-running simula-
tions for performance evaluation, so search-
ing the entire space would take far too
long. To make this problem more tractable,
one powerful technique is to generate predic-
tive models from samples of the design
space.15 With only relatively few design sim-
ulations, we can analyze the performance
numbers and produce an analytical model.

Using this technique, we’ve created a hier-
archical system trade-off optimization

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 19

Figure B1 shows a generic SSM tile. Figure B2 shows the same tile

configured for one active processor, with a small one-way instruction

cache and a two-way data cache. Figure B3 shows a constant-

propagated, generated version of this configuration. The configuration

in Figure B3 also requires some specialized functional units (FUs) inside

the processor—which our choice of Tensilica as the base processor

facilitates.

References

1. K. Mai et al., ‘‘Smart Memories: A Modular Reconfigurable

Architecture,’’ Proc. 27th Ann. Int’l Symp. Computer Archi-

tecture (ISCA 00), ACM Press, 2000, pp. 161-171.

2. A. Solomatnikov, ‘‘Polymorphic Chip Multiprocessor

Architecture,’’ doctoral dissertation, Dept. of Electrical

Eng., Stanford Univ., 2008.

3. R.E. Gonzalez, ‘‘Xtensa: A Configurable and Extensible

Processor,’’ IEEE Micro, vol. 20, no. 2, 2000, pp. 60-70.

4. K. Mai et al., ‘‘Architecture and Circuit Techniques for a

1.1-GHz 16-kb Reconfigurable Memory in 0.18-mm

CMOS,’’ IEEE J. Solid-State Circuits, vol. 40, no. 1, 2005,

pp. 261-275.

5. A. Firoozshahian et al., ‘‘A Memory System Design Frame-

work: Creating Smart Memories,’’ Proc. 36th Ann. Int’l

Symp. Computer Architecture (ISCA 09), ACM Press, 2009,

pp. 406-417.

Processor

T D

T D

DD T

D

D

FU FU

M M

M M

M

M

Crossbar

M M

M M

M

M

M M

M M

Processor

T D

T D

D

M

Crossbar

D T

D M

M

M

D M

M M

FU FU

Data
cache

Instruction
cache

Data
cache

Instruction
cache

(1) (2) (3)

ProcessorProcessorProcessor

Figure B. Using the configurable SSM design as a limited chip generator: reconfigurable SSM (1); desired

configuration, including a single-way instruction cache and a two-way data cache (2); and the generated hardware (3).

(FU: functional unit; M: memory mat; D: memory mat used for cache-line data; T: memory mat used for

cache-line tag.)

....................................................................

NOVEMBER/DECEMBER 2010 19



framework.16 Leveraging sample-and-fit
methods, we’ve shown that it’s possible to
dramatically reduce the number of simula-
tions required. With only 500 simulation
runs, we accurately characterized large design
spaces for processor systems that had billions
of possible design configurations. Moreover,
by encapsulating energy-performance trade-
off information into libraries, we created a
hierarchical framework that could evaluate
both higher-level microarchitectural design
knobs and lower-level circuit trade-offs.
Finally, by using particular mathematical
forms during the fit, we formulated the opti-
mization problem as a geometric program,
making the optimization process more effi-
cient and robust. (Geometric programs are
formalized optimization problems that can
be solved efficiently using convex solvers.
They are similar to well-known linear-
programming problems, but they allow for
particular nonlinear constraints and are,
therefore, significantly more general.17)

Figure 6 shows the results of using this
framework to optimize a processor architec-
ture. Each curve represents a particular
high-level architecture with various underly-
ing design knobs. As the performance re-
quirement increases, our optimization
framework allocates more resources to each
design, resulting in higher performance, but
also higher cost. Figure 6a shows some of
the lower-level design parameters throughout
the design space for one high-level architec-
ture. Figure 6b compares various higher-
level architectures. This optimization
method is a great tool for tuning many
low-level parameters. We’re currently work-
ing on how to effectively encode and include
higher-level, more domain-specific informa-
tion into the framework.

Verifying chip generators
Even if we can successfully generate an

optimized design, we must still address the
validation problem because no tool, includ-
ing ours, can be truly bug free. This is signif-
icant because design verification is one of the
greatest hurdles in ASIC design, estimated to
account for 35 to 70 percent of the total de-
sign cost. Our solution is for the chip gener-
ator to automatically produce significant
portions of the verification collateral.

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 20

400 600 800 1,000
80

90

100

110

120

130

140

150

Performance (MIPS)

E
ne

rg
y 

(p
J 

p
er

 in
st

ru
ct

io
n)

Clock frequency: 426 MHz
I-cache: 19 Kbyte at 1.52 ns
D-cache: 12 Kbyte at 1.21 ns

IW: 7 entries
BTB: 67 entries

Adder delay: 1.93 ns
Register file: 0.60 ns

Clock frequency: 768 MHz
I-cache: 32 Kbyte at 1.08 ns
D-cache: 16 Kbyte at 0.92 ns

IW: 11 entries
BTB: 900 entries

Adder delay: 0.92 ns
Register file: 0.50 ns

Clock frequency: 630 MHz
I-cache: 26 Kbyte at 1.21 ns
D-cache: 12 Kbyte at 1.20 ns

IW: 9 entries
BTB: 400 entries

Adder delay: 1.20 ns
Register file: 0.52 ns

0 500 1,000 1,500 2,000

50

100

150

200

250

300

350

Performance (MIPS)

E
ne

rg
y 

(p
J 

p
er

 in
st

ru
ct

io
n)

In-order, 1-issue
In-order, 2-issue
In-order, 4-issue
Out-of-order, 1-issue
Out-of-order, 2-issue
Out-of-order, 4-issue

In-order,
4-issue

Out-of-order,
2-issue

Out-of-order,
4-issue

In-order,
2-issue

In-order,
1-issue

(a)

(b)

Figure 6. Exploring the energy-performance trade-off curve for processor de-

sign: Our optimization framework identifies the most energy-efficient set of

design parameters to meet a given performance target, simultaneously

exploring microarchitectural design parameters (cache sizes, buffer and

queue sizes, pipeline depth, and so forth) and trade-offs in the circuit imple-

mentation space. As the performance target increases, more aggressive (but

higher-energy) solutions are required. An example is shown using the optimi-

zation of a dual-issue, out-of-order processor (a). By repeating this process

for different high-level processor architectures, and then overlaying the

resulting trade-off curves, designers can determine the most efficient archi-

tecture for their needs; Pareto-optimal curves for six different architectures

are shown here (b). (BTB: branch target buffer; IW: instruction window.)

....................................................................

20 IEEE MICRO

...............................................................................................................................................................................................

CHIP DESIGN



This verification collateral’s main compo-
nents include a testbench, design assertions,
test vectors, and a reference model. Using a
fixed system architecture with flexible com-
ponents is advantageous: because the system
architecture is fixed, and the interfaces are
known, the same testbench and scripts can
be used for multiple generated instances.
This is similar to the verification of run-
time-reconfigurable designs. In addition, we
can apply the parameters used for the chip
generator’s inner components to create the
local assertions.

Once the testbench is in place, a gener-
ated design would require a set of directed
and constrained-random vectors. Generating
directed test vectors is conceptually more dif-
ficult because they depend on the target ap-
plication, although researchers have shown
that automatic directed-test-vector genera-
tion can be very effective.17 Most test vectors,
however, are, the more easily generated, con-
strained-random vectors. Unfortunately, ran-
dom vectors require a model for comparison,
and accurate reference models of complex
systems are difficult to create.

A traditional reference model, or score-
board, accurately predicts a single correct an-
swer for every output. This requires,
however, that the model and design imple-
ment the same timing, arbitrations, and pri-
orities on a cycle-accurate basis—a difficult
requirement for any complex design, and
an infeasible requirement for a generated
one. The key to solving this problem is to ab-
stract the implementation details from the
correctness criteria. One example of this
approach, TSOtool (Total Store Order
tool), verifies the CMP memory system cor-
rectness by algorithmically proving that a se-
quence of observed outputs complies with
TSO axioms.18 Another recent method, the
Relaxed Scoreboard,19 moves verification to
a higher abstraction level by keeping a set
of possibly correct outputs, and updating
this set according to the actual detected out-
puts. Thus, the Relaxed Scoreboard allows
any observed outputs, as long as they obey
the high-level protocol.

By not relying on implementation details,
TSOtool and the Relaxed Scoreboard are
suitable as chip generator reference models
because they can be reused for all generated

instances. Decoupling the implementation
from the reference model also has a second-
ary advantage: it prevents the same imple-
mentation errors from being automatically
duplicated in the reference model.

However, it’s essential to understand that
the validation efforts for our solution focus
on verifying the resulting instance of the
chip generator, not the chip generator itself.
Moreover, verification engineers commonly
tweak a design’s components to induce inter-
esting corner cases—for example, by reduc-
ing a producer-consumer first-in, first-out
(FIFO) buffer’s size to introduce more
back-pressure scenarios. Leveraging the chip
generator, verification engineers can quickly
produce even more variations, introduce
more randomness, and expose more corner
cases.

When verifying instances produced by
our prototype chip generator, we found
that this technique resulted in a better and
faster verification process for each of the de-
sign instances, because one generated in-
stance often exposed a given bug more
quickly than other instances. This synergy,
coupled with our observation that generating
the verification collateral wouldn’t be signifi-
cantly more difficult than creating a single
validation infrastructure, is critical. First, it
means we haven’t made a very difficult task
even worse. Second, the validation’s effective
cost decreases with each new instance pro-
duced, while the validation quality improves.

T he integrated-circuits industry is fa-
cing a huge problem. When systems

are power limited, improved performance
requires decreasing the energy of each
operation, but technology scaling is no longer
providing the energy reduction required.
Providing this energy reduction will require
tailoring systems to specific applications, and
today such customization is extremely ex-
pensive. Addressing this issue requires
rethinking our approach to chip design—
creating chip generators, not chip instances,
to provide cost-effective customization. Our
results have demonstrated the feasibility of
our chip generator approach, as well as the
potential energy savings it could foster.

Our current focus is on using these con-
cepts to create an actual chip multiprocessor

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 21

....................................................................

NOVEMBER/DECEMBER 2010 21



generator that’s capable of producing custom
chip instances in the image-encoding and
voice-recognition domains. If our success
continues, we hope that people will someday
look back at RTL coding the way they now
look back at assembly coding and custom
IC design: although working at these lower
levels is still possible, working at higher levels
is more productive and yields better solutions
in most cases. M I CR O

Acknowledgments
We acknowledge the support of the C2S2

Focus Center, one of six research centers
funded under the Focus Center Research
Program (FCRP), a Semiconductor Research
Corporation entity, under contract
1041388-237984. We also acknowledge the
support of DARPA Air Force Research Lab-
oratory, contract FA8650-08-C-7829. Ofer
Shacham is partly supported by the Sands
Family Foundation. Megan Wachs is sup-
ported by a Sequoia Capital Stanford Grad-
uate Fellowship. Kyle Kelley is supported by
a Cadence Design Systems Stanford Gradu-
ate Fellowship. Finally, we thank the manag-
ers and staff at Tensilica for their technical
support and cooperation.

....................................................................
References

1. A. Sangiovanni-Vincentelli and G. Martin,

‘‘Platform-Based Design and Software

Design Methodology for Embedded

Systems,’’ IEEE Design & Test, vol. 18,

no. 6, 2001, pp. 23-33.

2. G.E. Moore, ‘‘Cramming More Components

onto Integrated Circuits,’’ Electronics,

vol. 38, no. 8, 1965, pp. 114-117; http://

download.intel.com/research.silicon/

moorespaper.pdf.

3. R.H. Dennard et al., ‘‘Design of Ion-

Implanted MOSFET’s with Very Small Phys-

ical Dimensions,’’ Proc. IEEE J. Solid-State

Circuits, vol. 9, no. 5, 1974, pp. 256-268.

4. ‘‘SPEC CPU2006 Results,’’ Standard Perfor-

mance Evaluation Corp., 2006; http://www.

spec.org/cpu2006/results.

5. P. Hanrahan, ‘‘Keynote: Why Are Graphics

Systems So Fast?’’ Proc. 18th Int’l Conf.

Parallel Architectures and Compilation

Techniques (PACT 09), IEEE CS Press,

2009, p. xv.

6. J. Balfour et al., ‘‘An Energy-Efficient Pro-

cessor Architecture for Embedded Sys-

tems,’’ Computer Architecture Letters,

vol. 7, no. 1, 2008, pp. 29-32.

7. R.E. Collett, ‘‘How to Address Today’s

Growing System Complexity,’’ 13th Ann.

Design, Automation and Test in Europe

Conf. (DATE 10), executive session, IEEE

CS, 2010.

8. D. Grose, ‘‘From Contract to Collaboration

Delivering a New Approach to Foundry,’’

keynote, 47th Design Automation Conf.

(DAC 10), ACM, 2010; http://www2.dac.

com/App_Content/files/GF_Doug_Grose_

DAC.pdf.

9. A. Solomatnikov et al., ‘‘Using a Configu-

rable Processor Generator for Computer

Architecture Prototyping,’’ Proc. 42nd

Ann. IEEE/ACM Int’l Symp. Microarchitec-

ture (Micro 09), ACM Press, 2009,

pp. 358-369.

10. T. Weigand et al., ‘‘Overview of the

H.264/AVC Video Coding Standard,’’ IEEE

Trans. Circuits and Systems for Video Tech-

nology, vol. 13, no. 7, 2003, pp. 560-576.

11. K. Kuah, ‘‘Motion Estimation with Intel

Streaming SIMD Extensions 4 (Intel SSE4),’’

Intel, 29 Oct. 2008; http://software.intel.

com/en-us/articles/motion-estimation-with-

intel-streaming-simd-extensions-4-intel-sse4.

12. R. Hameed et al., ‘‘Understanding Sources of

Inefficiency in General-Purpose Chips,’’ Proc.

37th Ann. Int’l Symp. Computer Architecture

(ISCA 10), ACM Press, 2010, pp. 37-47.

13. H. Li et al., ‘‘Accelerated Motion Estimation

of H.264 on Imagine Stream Processor,’’

Proc. Image Analysis and Recognition,

LNCS 3656, Springer, 2005, pp. 367-374.

14. C. Johnson et al., ‘‘A Wire-Speed Power

Processor: 2.3GHz 45nm SOI with 16

Cores and 64 Threads,’’ Proc. IEEE Int’l

Solid-State Circuits Conf. (ISSCC 10), IEEE

Press, 2010, pp. 14-16.

15. B.C. Lee and D.M. Brooks, ‘‘Accurate and

Efficient Regression Modeling for Micro-

architectural Performance and Power

Prediction,’’ ACM SIGARCH Computer

Architecture News, vol. 34, no. 5, 2006,

pp. 185-194.

16. O. Azizi et al., ‘‘Energy-Performance Trade-

offs in Processor Architecture and Circuit

Design: A Marginal Cost Analysis,’’

Proc. 37th Ann. Int’l Symp. Computer

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 22

....................................................................

22 IEEE MICRO

...............................................................................................................................................................................................

CHIP DESIGN



Architecture (ISCA 10), ACM Press, 2010,

pp. 26-36.

17. Y. Naveh et al., ‘‘Constraint-Based Random

Stimuli Generation for Hardware Verifica-

tion,’’ Proc. 18th Conf. Innovative Applica-

tions of Artificial Intelligence (IAAI 06),

AAAI Press, 2006, pp. 1720-1727.

18. S. Hangal et al., ‘‘TSOtool: A Program for

Verifying Memory Systems Using the Mem-

ory Consistency Model,’’ Proc. 31st Ann.

Int’l Symp. Computer Architecture (ISCA

04), IEEE CS Press, 2004, pp. 114-123.

19. O. Shacham et al., ‘‘Verification of Chip Mul-

tiprocessor Memory Systems Using A

Relaxed Scoreboard,’’ Proc. 41st IEEE/ACM

Int’l Symp. Microarchitecture (Micro 08),

IEEE CS Press, 2008, pp. 294-305.

Ofer Shacham is pursuing a PhD in
electrical engineering at Stanford University.
His research interests include high-
performance and parallel computer architec-
tures, and VLSI design and verification
techniques. Shacham has an MS in electrical
engineering from Stanford University.

Omid Azizi is a member of the Chip
Generator Group at Stanford University.
He is also an engineer at Hicamp Systems in
Menlo Park, California. He is also His
research interests include systems design and
optimization, with an emphasis on energy
efficiency. Azizi has a PhD in electrical
engineering from Stanford University. He is
a member of IEEE.

Megan Wachs is pursuing a PhD in
electrical engineering at Stanford University.
Her research interests include the develop-
ment of hardware design and verification
techniques. Wachs has an MS in electrical
engineering from Stanford University.

Wajahat Qadeer is pursuing a PhD in
electrical engineering at Stanford University.
His research interests include design of
highly efficient parallel computer systems
for emerging applications. Wajahat has an
MS in electrical engineering from Stanford
University. He is a member of IEEE.

Zain Asgar is pursuing his PhD in electrical
engineering at Stanford University. He is

also an engineer at NVIDIA. His research
interests include multiprocessors and the
design of next-generation graphics proces-
sors. Asgar has an MS in electrical engineer-
ing from Stanford University.

Kyle Kelley is pursuing a PhD in electrical
engineering at Stanford University. His
research interests include energy-efficient
VLSI design and parallel computing. Kelley
has an MS in electrical engineering from
Stanford University.

John P. Stevenson is pursuing a PhD in
electrical engineering at Stanford University.
His research interests include VLSI circuit
design and computer architecture. Stevenson
has an MS in electrical engineering from
Stanford University.

Stephen Richardson is a consulting associ-
ate professor in the Electrical Engineering
Department at Stanford University. He is
also a cofounder of Micro Magic. His
research interests include various aspects of
computer architecture. Richardson has a
PhD in electrical engineering from Stanford
University. He is a member of IEEE.

Mark Horowitz chairs the Electrical En-
gineering Department and is the Yahoo
Founders Professor at Stanford University.
He is also a founder of Rambus. His research
interests range from using electrical-
engineering and computer-science analysis
methods in molecular-biology problems to
creating new design methodologies for
analog and digital VLSI circuits. Horowitz
has a PhD in electrical engineering from
Stanford University. He is a Fellow of IEEE
and the ACM, and is a member of the
National Academy of Engineering and the
American Academy of Arts and Science.

Benjamin Lee is an assistant professor of
electrical and computer engineering at Duke
University. His research interests include
scalable technologies, computer architectures,
and high-performance applications. Lee has a
PhD in computer science from Harvard
University. He is a member of IEEE.

Alex Solomatnikov is an engineer at
Hicamp Systems in Menlo Park, California.

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 23

....................................................................

NOVEMBER/DECEMBER 2010 23



His research interests include computer
architecture, VLSI design, and parallel
programming. Solomatnikov has a PhD in
electrical engineering from Stanford Univer-
sity. He is a member of IEEE.

Amin Firoozshahian is an engineer at
Hicamp Systems. His research interests
include memory systems, reconfigurable
architectures, and parallel-programming
models. Firoozshahian has a PhD in
electrical engineering from Stanford

University. He is a member of IEEE
and the ACM.

Direct questions and comments about
this article to Ofer Shacham, Stanford
University, 353 Serra Mall, Gates building,
Room 320, Stanford, CA 94305;
shacham@stanford.edu.

[3B2-14] mmi2010060009.3d 10/12/010 12:22 Page 24

....................................................................

24 IEEE MICRO

...............................................................................................................................................................................................

CHIP DESIGN



For access to more content from the IEEE Computer Society, 
see computingnow.computer.org.

This article was featured in

Top articles, podcasts, and more.

computingnow.computer.org



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Helvetica
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /None
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /None
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /None
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


