
University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. c⃝Soudeh Ghorbani Khaledi et al.

Using Memory and Random Sampling for Load
Balancing in High-radix Switches

Soudeh Ghorbani Khaledi, Yashar Ganjali
Department of Computer Science, University of Toronto

{soudeh, yganjali}@cs.toronto.edu

Amin Firoozshahian
Hicamp Systems Inc.

aminf13@hicampsystems.com

Abstract—Dramatic increase in the size of communication
networks as well as huge growth in data transmission rates
have made designing high performance switches an essential
part of building any interconnection network. Recent advances in
fabrication technology have significantly increased the number
of input and output ports in network switches. An interesting
problem in designing such switches is how to balance the load
among output ports of a switch when using adaptive routing
algorithms. This problem is important for example in case of
Clos networks and multi-stage load balanced switches; in the
first stage of such a network/switch, packets from any input can
be routed to any output port. Therefore, the decision of which
output port to send the packets makes an important difference in
the balance of the load in output ports and thus, in the throughput
of the whole network. In practice, comparing the entire set of
output queues to identify the best output port to direct a packet
is prohibitively complex in the context of switches with a large
number of ingress/egress ports (known as high-radix switches).

In this paper we evaluate randomized schemes for balancing
the load in such switches, both theoretically and via simulation.
We prove that, despite being simple to implement, scheduling
policies based on random sampling cannot guarantee stability
when service rates are unequal. We also prove that simply adding
one unit of memory to save the identity of least loaded queues
in addition to few random samples can solve this problem: if
no input port is oversubscribed, 100% throughput is achieved.
We also present an extensive set of simulations to study the load
distribution under different randomized scheduling algorithms
with and without memory. We find that using as few as 2 or 3
random samples and one memory unit can result in balanced
load in output queues regardless of low or high input loads and
without any need for extra speedup.

I. INTRODUCTION

The size of communication networks and data transmission
rates are constantly increasing. This makes designing high
performance switches a must in building any interconnection
network. In designing such switches, there are two main
issues which need to be addressed: First, due to higher
data transmission rates the time available for making routing
decisions for each individual packet is very short. Therefore,
routing decisions must be made very fast. Second, large
networks require high-radix switches, i.e., switches with many
input/output ports. Coordination among all the ports in such a
switch is very costly in terms of complexity and cycle time.

To remedy this situation the switching task can be paral-
lelized by using multi-stage architectures that use lower speed
and/or smaller switches operating independently and in paral-
lel. Clos networks [1] are classical example of multi-stage net-

1st Stage 3rd Stage

2nd Stage

Fig. 1. Load balancing in multi-stage switches/Clos networks.

work switches that are very attractive substitutes for crossbar
switches since they have fewer cross-points than a complete
crossbar and therefore scaling them is much easier. Although
Clos networks were first designed for circuit switches, they
have been widely used in packet switching networks because
of their nice properties like scalability, path diversity, low di-
ameter, and their simple structure. Parallel packet switch (PPS)
architectures [2], Distributed Switch Architecture (ADSA) [3],
and load balanced Birkhoff-von Neuman switches [4] are other
examples of multi-stage architectures in which arriving traffic
is demultiplexed over lower speed switches, switched to the
correct output port, and then recombined before leaving the
system.

A critical issue to be addressed in distributed switch ar-
chitectures is the design of simple, fast and efficient load-
balancing scheduling algorithms for the first stage switches,
so that they can balance the load by distributing the incoming
packets evenly among the ports of the middle stage. The mid-
dle stage switches, then, route packets to their corresponding
destination ports.

As an example, let us consider a packet p going from input
port i to output port j. The switch in the first stage which is
connected to the input port i can route the packet to any of the
middle stage switches. No matter which middle-stage switch
receives the packet p, it can route it to the switch in the third
stage connected to the output port j. Since there are k middle
stage switches, the switch has a path diversity of k. We note
that the path from any middle stage switch to the output port
is unique (Figure 1(left)).

Clearly, performance of a multistage switch architecture
highly depends on how packets are routed, i.e. which middle
stage switch is used to route each packet. If choosing the

1



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 2

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues

 

 
(1,0)
(1,1)
(1,2)

(a) d=1, m=0,1,2, 256*256 Switch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues

 

 
(2,0)
(2,1)
(2,2)

(b) d=2, m=0,1,2, 256*256 Switch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues

 

 
(3,0)
(3,1)
(3,2)

(c) d=3, m=0,1,2, 256*256 Switch

Fig. 2. CDF of Standard Deviation of Output Queues’ Occupancy over Time
for (d,m) Policies for Heavy Traffic and No Speedup For a 256*256 Switch.

middle stage is done inappropriately and too many packets are
forwarded towards the same switch in the middle stage, the
throughput of the network is reduced because of the congestion
in the middle stage switch. To avoid this problem, each switch
in the first stage of the network must try to distribute the load
evenly on its output ports (Figure 1(right)).

If all switches in the first stage can balance the load among
their outgoing ports, the total load will be balanced in the
middle stage and the throughput of the whole network is
maximized. Note that if the service rate is identical for all
the output ports, a simple round robin approach could achieve
balanced load. Hence, we address the more challenging case
where the service rates can vary among the output ports.
To have perfect load balancing, there are two intertwined
problems to solve. First, each input port needs to choose
among a large list of output ports (for N ports, this is of time
complexity O(N)). Second, we need an explicit or implicit
coordination mechanism among all input ports to avoid all
inputs directing their packets to the same output, as this leads
to huge bursts and load imbalance in the network.

To mitigate the cost of comparing the length of all output
queues and avoid communication overhead, randomized ver-
sion of scheduling might be considered: whenever a packet is
arrived at any input port, it is assigned to the least loaded of
d randomly chosen output queues, where d ≪ N .

The classic load balancing problem in the literature (usually
referred to as the supermarket models), considers a single
input and many output queues as opposed to multiple inputs
in our case. For that problem, it is well-known that with a
small amount of choice d = 2 load balancing performance
greatly improves over random placement d = 1 [5]. However,
as we prove in Theorem 1 in Section 2, in our problem, i.e., in
the switches under Bernoulli i.i.d. packet arrival processes for
admissible traffic and when no input port is oversubscribed,
scheduling by using only randomization can lead to instability.
This problem, alas, cannot be resolved by increasing the
number of samples: even for d = O(N), where N in the
number of outputs; there exists admissible traffic for which
the system becomes unstable, unless d = N .

On the positive side, we show that there is a simple way
around this problem to guarantee stability. We theoretically
prove that deploying a single unit of memory for each input
port in which that port saves the identity of the output port
with the shortest queue length from the previous time slots
makes the system stable.

We also present simulations that show random sampling
with memory leads to nearly perfect load balance in system
and can improve the performance of the system, e.g., it
decreases the average and standard deviation of the occupancy
of output queues. Our simulations show that regardless of the
input load (light or heavy) and independent of the speedup
of output queues (how many packets they can receive in each
time slot) nearly perfect load balancing and acceptable latency
is achievable with using very small number of samples, e.g.,
d = 2 or 3, and a single unit of memory for each input port.

The organization of the paper is as follows. In Section



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 3

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Output Queues

 

 
(1,0)
(1,1)
(1,2)

(a) d=1, m=0,1,2, 256*256 Switch

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg of the Occupancy of Output Queues

 

 
(2,0)
(2,1)
(2,2)

(b) d=2, m=0,1,2, 256*256 Switch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Output Queues

 

 
(3,0)
(3,1)
(3,2)

(c) d=3, m=0,1,2, 256*256 Switch

Fig. 3. CDF of Avg. of Output Queues’ Occupancy over Time for (d,m)
Policies for Heavy Traffic and No Speedup For a 256*256 Switch.

2, the model employed for the theoretical analysis of the
system and random policies are described. We also prove
that scheduling policies based only upon random samples
are unstable. Moreover, for admissible i.i.d. arrival processes,
stability is proved for (d,m) policies when m ≥ 1. In Section
3, we explain how the policies are evaluated. The setup,
components and results of our simulation are also presented.
We provide an overview of related work in Section 4. The
paper concludes in Section 5.

II. LOAD BALANCING IN HIGH-RADIX SWITCHES

We consider an N × N combined input output queued
switch with FIFO queues in which the arrivals are independent
i.e., arrivals at each input are independent and identically
distributed(i.i.d) and arrival processes at each input are in-
dependent of arrivals at other inputs. We further assume that
arriving packets are of fixed and equal length. Traffic is also
assumed to be admissible, i.e.,

∑N
i=1 δi ≤

∑N
i=1 µi, where δi

is the arrival rate to input port i (1 ≤ i ≤ N ) and µj is the
service rate of output queue j (1 ≤ j ≤ N ).
(d,m) Scheduling Policy: We consider randomized scheduling
that at each time slot, every input port chooses d random
outputs out of possible N queues, finds the queue with
minimum occupancy between these d samples and m least
loaded samples from previous time slot, and routes its packet
to it. At the end of each time slot, an input port will update
the content of its m memory units with the identity of the
least loaded output queues. In case of the contention for any
given output port, that port will randomly choose K of the
input ports, where 1 ≤ K ≤ N , and other input ports will be
blocked. Such policies will be called (d,m) policies.

A. Load balancing using random sampling without memory

First, we consider (d, 0) policy, i.e., the algorithm in which
every input port chooses d random outputs out of possible
N queues, finds the queue with minimum occupancy between
them and routes its packet to it. By Theorem 1, we prove that
such algorithm cannot guarantee stability.

Theorem 1: For unequal service rates and admissible i.i.d.
arrival processes, (d, 0) policy cannot guarantee stability for
any arbitrary number of samples d, where d is less than the
number of outputs.

Proof: Let δi be the arrival rate to input port i, and µj be
the service rate of output queue j. Now consider output queue
N . For any input port, the probability that it chooses output
queue N as a sample is d

N . So, maximum arrival rate to queue
N is d

N ×
∑N

i δi. Thus, the minimum arrival rate to the rest
N − 1 output queues is

δN−1 =
N∑
i

δi −
d

N
×

N∑
i

δi =

N∑
i

δi × (1− d

N
).

Clearly, if δN−1 is larger than the sum of the service rates of
these N − 1 queues, the system will be unstable.

It should be noted that the argument does not hold

1) when there are some restriction regarding the service
rates, like when the service rates are equal. Or,

2) when d = N .

These two special cases, however, are of little interest. Since
the former opts out some admissible patterns of traffic, and
the latter will nullify the benefit of randomization. The results
of our experiments suggest that the system will perform well
with d ≪ N .



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 4

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Output Queues

 

 
(1,0)
(1,1)
(1,2)

(a) d=1, m=0,1,2, 256*256 Switch

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Output Queues

 

 
(2,0)
(2,1)
(2,2)

(b) d=2, m=0,1,2, 256*256 Switch

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Output Queues

 

 
(3,0)
(3,1)
(3,2)

(c) d=3, m=0,1,2, 256*256 Switch

Fig. 4. CDF of Max of Output Queues’ Occupancy over Time for (d,m)
Policies for Heavy Traffic and No Speedup For a 256*256 Switch.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Output Queues

 

 
(1,0)
(1,1)
(1,2)

(a) d=1, m=0,1,2, 256*256 Switch

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Output Queues

 

 
(2,0)
(2,1)
(2,2)

(b) d=2, m=0,1,2, 256*256 Switch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Output Queues

 

 
(3,0)
(3,1)
(3,2)

(c) d=3, m=0,1,2, 256*256 Switch

Fig. 5. CDF of 90th Percentile of Output Queues’ Occupancy over Time for
(d,m) Policies for Heavy Traffic and No Speedup For a 256*256 Switch.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 5

B. Load balancing using random sampling with memory

It was shown that randomized policy cannot guarantee
stability without using unit of memory. By Theorem 2, we
prove that having only one sample and using a single memory
for each input port ensures stability for all uniform and non-
uniform independent arrival processes.

Theorem 2: (1, 1) policy is stable for all admissible i.i.d.
arrival processes.

To prove that the algorithm is stable, using the result of
Kumar and Meyn [6], we show that for an N × N switch
scheduled using the (1, 1) policy, there is a negative expected
single-step drift in a Lyapunov function, V. In other words,

E[V (n+ 1)− V (n)|V (n)] ≤ ϵV (n) + k,

where k > 0 and ϵ > 0.
We do so by defining V (n) as:

V (n) = V1(n) + V2(n),

where

V1(n) =

N∑
i=1

V1,i(n),

V1,i(n) = (q̃i(n)− q∗(n))2,

V2(n) =
N∑
i=1

q2i (n).

And qk(n), q̃k(n) and q∗(n), respectively, represent the
length of the k-th output queue, the length of the output queue
chosen by the input i, and the length of the shortest output
queue in the system under policy (1, 1) at time instance n.

Details of the proof can be found in the Appendix.

III. SIMULATIONS

Stability of (d,m) policies, where m > 0 is proved in the
previous section. Performance of different (d,m) policies are
evaluated via simulation for different settings with different
traffic load and speedup. In order to evaluate these policies, a
reference scheme, hereafter called ideal, is used in which each
input port will check the queue length of all of the output ports,
and chooses the shortest one to send its packet to. It is worth
emphasizing that this is done in parallel i.e. input ports cannot
choose the output ports based on the results of the decision
made by any other input ports. Moreover, for ideal policy, it is
also assumed that any output queue can receive packets from
all the input ports during each time slot, so that there will be
no contention for output ports. It should be noted, however,
that large number of packets that might be destined to a single
output port may cause the so called ideal policy not to perform
literally ideal in all scenarios.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues For 64*64 Switches

 

 

(1,0)
(1,1)
(1,2)

(a) d=1, m=0,1,2, 64*64 Switch

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues For 64*64 Switches

 

 
(2,0)
(2,1)
(2,2)

(b) d=2, m=0,1,2, 64*64 Switch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues For 64*64 Switches

 

 
(3,0)
(3,1)
(3,2)

(c) d=3, m=0,1,2, 64*64 Switch

Fig. 6. CDF of Standard Deviation of Output Queues’ Occupancy over Time
for (d,m) Policies for Heavy Traffic and No Speedup For a 64*64 Switch.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 6

A. Setup
1) Components: To keep the simulation setup simple, we

have chosen to model only one node of the Clos network. Each
node is an N ×N combined input output queue switch. For
the simulation, we ran the experiments on 256×256 and 64×
64 switches. Each node contains an arbitrator, which decides
which input queues have the highest priority when contending
for an output port. In the experiments, these queues are chosen
randomly. The switch fabric in each node is a crossbar that
routes packets from the input queues to the output queues.
This is done in parallel for all input ports. the router in the
node decides which output port to send the packet to for every
packet that is at the head of the input queues.

We consider time to be slotted and that packets can arrive
at the switch at the beginning of each time slot. Furthermore,
we assume that at most one packet arrives at an input port and
at most one packet departs from an output port during each
time slot. Number of packets that can enter an output queue is
also limited considering the speedup as explained in Speedup
Section.

Packets may have to wait at an input port if they lose the
contention for the output port they choose, and may have to
wait at an output port before departing. We also consider the
capacity of input and output buffers to be infinitive.

2) Simulated Traffic: We assume that sum of arrival rates
is smaller or equal to sum of service rates, and no in-
put port is oversubscribed. For evaluating the policies, we
consider 2 cases: when the system is heavily loaded, e.g.,
avg(δi)/avg(µj) = 0.98, and when the system is lightly
loaded, avg(δi)/avg(µj) = 0.5, where δi and µj represents
the arrival rate at input port i and service rate at output port
j, respectively. We also assume that packets arriving to input
ports have independent Bernoulli distributions.

Since we are simulating a single node of a network, in order
to get more realistic results we assign different service rates
between zero and one. In a real system this is automatically
done because of the backpressure from other switches in
the system. Likewise, arrival processes are assumed to have
unequal rates to mimic nonuniform traffic.

3) Speedup: In the randomized scheduling that we study,
several input ports may compete for a specific output port.
Our incentive for having faster internal fabrics actually stems
from the need to be able to transfer more than a packet to each
output port in a given time slot. Therefore, rather than enabling
both input and output ports to respectively send and receive
K packets during each time slot, which is feasible in switches
with speedup of K, we are interested in the case that only
output ports can receive up to K packets in each time slot, and
akin to systems with no speedup, input ports are restricted to
send out at most a single packet per time slot. Alternatively,
by speedup of K, we mean that in each time slot, a given
output port can grant permission to up to K of the input ports
to destine their packets to it, while an input port can send out
no more than a packet. Imposing the mentioned restriction
on input ports causes us to only partially take advantage of
potentials of switches with speedup. However, the results of

our experiments show that this restricted speedup still results in
great improvement in system performance in terms of average
latency of packets when the system is heavily loaded.

In the experiments, we consider the case that the switch
does not have speedup, and when it has speedup of 2.

B. Simulation results

1) Heavy Traffic and No Speedup: Instability of (d, 0)
policies makes exploiting memory inevitable. We dig closer
into queue occupancy distributions when different number of
memory units are used, and find that for small number of sam-
ples, d, taking advantage of a single memory unit considerably
ameliorates balancing the load among output queues. As the
number of samples increases, this effect gradually fades away.
This is depicted in Figures 2, 3, 4, and 5 for d = 1, 2, 3, and
for standard deviation, average, maximum and 90th percentile
of output queues’s occupancy for a 256*256 switch, and in
Figure 6 for standard deviation of output queues’ occupancy
of a 64*64 switch. The figures suggest that the first memory
unit causes the standard deviation, average, maximum, and
90th percentile of the policies with small number of sample to
drop significantly which signals that balancing the load among
the output ports is improved, but using the 2nd unit of memory
does not have such strong effect. For other settings like light
load or speedup of 2, and other values of d similar trend is
observed.

These results suggest that one unit of memory for each input
port should be adequate. To figure out the appropriate number
of samples, we measured statistical metrics of input and output
queues’ occupancies for several (d, 1) policies, (256, 0) policy
and ideal policy. Clearly, when the number of samples is equal
to the number of input queues, 256 in this case, using memory
will not alter the performance of the scheduling in any way,
since at any time step the inputs will have all the information
for determining the shortest output queues. Note that ideal and
(256, 0) policies differ in the speedup of system (which is N
for the former and 1 for the latter in this setting).

As demonstrated in Figures 7 and 23 (a), the considered
random policies all outperform the ideal policy by provid-
ing considerably lower average, standard deviation, max and
90th percentile of output queue occupancy. To have a better
judgement of the random policies relative to each other, ideal
policy is omitted from Figure 8 which demonstrates that nearly
perfect load balancing in achievable with using as few as 2 or
3 samples and a single memory unit for each input port.

In this setting, for random policies with several samples and
m=1, average latency of packets will drop to nearly half of the
latency for ideal policy. A number of these policies and their
corresponding latency are mentioned in Table 1.

2) Heavy Traffic and Speedup of 2: Same experiment is
repeated for the setting that speedup of switch is equal to 2,
and very similar results are obtained: as Figures 9 and 23
(b) show the random policies all outperform the ideal policy.
Among the random policies, as demonstrated by Figure 9,
using only 2 or 3 samples and a single memory unit for each
input port is sufficient to have balanced load and very small



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 7

average output queue size. Note that although average and
standard deviation of different policies have slightly increased
compared to the setting with heavy load and no speedup,
as Table 1 shows, average latency falls sharply to less than
15% of its corresponding value when the system does not
have speedup for policies (2, 1) and (3, 1). Moreover, standard
deviations are still very low. For (3, 1), for instance, standard
deviation of the lengths of output queues is always under 0.8
which suggests that load is perfectly balanced among output
ports.

3) Light Traffic and No Speedup: When the system is not
heavily loaded, balancing the load is not that much of a
challenge. As ρ = avg(δi)/avg(µi) diminishes, ideal policy
approaches the optimum case for balancing the load among
outputs. Yet, having the speedup of N and comparing the
length of all queues make it impractical. Measured metrics
related to output queues’ occupancy in this case, depicted
in Figures 11 and 23 (c) suggest that random policies will
perform well in this setting as well when switch has no
speedup. Also, as Table 1 shows, average latency for random
policies is around 1/10 of its value for ideal case.

4) Light Traffic and Speedup of Two: Similar results are
observed when the speedup of switch is 2, as shown by
Figures 12 and 23 (d). In this case too, small number of
samples and memory units guarantee low standard deviation
of occupancy of output queues, and a relatively small number
as the upper bound of queue occupancy. Average latency is
only slightly diminished compared with the setting with no
speedup. This should look trivial, considering that the switch
is lightly loaded. The results suggests that when system is not
heavily loaded, having speedup will not be of that much help
in ameliorating the performance of switch.
An Observation of Occupancy of Input Queues:
For heavy traffic, when the system has no speedup, introducing
memory increases the standard deviation, average, maximum
and 90th percentile of input queues’ occupancy, as shown in
Figures 13,14,15 and 16. However, as the number of samples
increases, this increase in average and maximum occupancy
gradually decreases. Intuitively, when memory is used for
small number of samples, the probability that more input ports
identify and target the same output ports increases. This will
result in contention for a limited number of output ports, and
since the switch does not have speedup, many of these input
ports will lose the contention and be blocked. Consequently,
the average and maximum input queues’ length increase in the
system. However, these 2 numbers always remain under 100
and 275 packets, respectively, in our experiments (Figure 17).

For heavy traffic when the switch has the speedup of 2,
the average and maximum input queues’ occupancy are very
small for small values of d, e.g., in (1,1), (2,1) and (3,1)
policies (respectively, under 3 and 20 packets in all time for
all these policies in our experiments, as shown by Figure
18). However, by increasing the number of samples these
values increase. For light load (with or without speedup), as
demonstrated in Figures 19 and 21, only for ideal policy input
queues can become really large. As shown in zoomed Figures

20 and 22, all (d,m) policies (for small or large values of
d) exhibit very small values for average and maximum input
queues’ occupancy, with no considerable difference between
these values for different ms and ds.

In conclusion, in addition to the balanced load among
output ports, (d, 1) policies with small number of samples,
also provide vary small average and maximum input queues’
occupancy for light traffic, and for heavy traffic when the
switch has the speedup of 2, and reasonably small values for
heavy traffic in switches without speedup.

IV. RELATED WORK

The urgent need to build high speed switches has motivated
many researchers to propose novel and high performance
multi-stage switch architecture that scales up well. As an
example of such attempts, Iyer et al. propose PPS architecture
[2]. Iyer and McKeown show that the initial centralized
approach used in PPS is impractical due to the large com-
munication complexity that it requires [7]. They modify the
PPS by allowing a small buffer, that runs at the line rate, in
the multiplexer and the demultiplexer [7]. C.S. Chang et al.[4]
have also proposed Birkhoff-von Neumann switch architecture
with two-stage switching fabrics and one-stage buffering in
which the 1st stage performs load balancing, while the 2nd
stage is a Birkhoff-von Neumann input-buffered switch that
performs switching for load balanced traffic. Although The
on-line complexity of the switch is O(1), for the number of
permutation matrices needed in their switch, the complexity is
O(N). ADSA architecture, proposed by Wang et al. [3] intro-
duces a small communication overhead of log(P ) + 2log(N)
extra bits per cell in addition to the cell payload, where P is
the number of parallel switch elements and N is the number
of communication overhead.

We believe that balancing the load in this context has a
much simpler solution: randomization. While simplicity of
implementation is clear, we proved the stability and evaluated
the actual performance with simulation. The idea of using
randomization and memory and the approach taken to theoret-
ically prove the stability originate from previous work about
load balancing.

Randomization in standard load balancing problem is gen-
erally considers placing n balls into n bins by choosing d
samples for each ball independently, uniformly at random
and sequentially, and placing each ball in the least loaded
of its chosen bins [8]. Apart from the ball and bin prob-
lem, another model, called supermarket model, is defined for
dynamic settings in which arrivals occur according to a rate
nλ(λ < 1) Poisson process at a bank of n independent rate
exponential servers, with the ith server having service rate
µi[8]. It is well established that for these problems, choosing
a small number of samples significantly improves performance
over random placement d = 1. Mitzenmacher et al. show
that same performance gain can be achieved by deploying a
small amount of memory [8]. Shah and Prabhakar introduce
using a memory and prove the stability for the problems for
(1, 1) policy [9]. Although supermarket problem is different



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 8

TABLE I
AVG. LATENCY EXPERIENCED BY EACH PACKET.

Policy (1,1) (2,1) (3,1) (100,1) ideal/sp=256
heavy traffic/sp=1 0.1710 0.1648 0.1637 0.1674 0.2963
heavy traffic/sp=2 0.0277 0.0214 0.0228 0.0429 0.2963
light traffic/sp=1 0.0142 0.0140 0.0138 0.0139 0.1606
light traffic/sp=2 0.0140 0.0137 0.0137 0.0138 0.1606

from routing packets in high radix switches in that it has
only a single arrival process and the arrivals will be served
sequentially whereas in switches all arrivals in input ports
are served simultaneously and in parallel, we take the same
approach as Shah and Prabhakar [9] to show that the results
similar to stability in supermarket problem hold valid in our
switching problem as well.

V. CONCLUSION AND FUTURE WORK

In balancing the load in the output ports of a high-radix
switch there are three main issues to be considered: First, in
distributing the load from input ports to output queues, higher
priorities must be given to shorter queues, i.e. more load must
be forwarded to them. Second, the load-balancing scheme
must not allow too many input ports to choose the same
output queue since in this case blocking will occur. Finally,
the load-balancing scheme must be very fast because of the
high transmission rate of the switch and the large number of
input/output ports. The randomized load-balancing methods
studied in this paper have all of these properties. They are
very fast since all the decisions are made based on the state
of d randomly chosen output ports. They reduce the chance
of blocking since output queues are chosen randomly and by
choosing the shortest queue among these d random samples,
they give higher priorities to shorter queues in the switch. We
prove that only exploiting only random sampling can lead to
instability, but also prove that using memory units for input
ports can guarantee stability. Based on empirical results, we
observe that using small values of samples, e.g., d = 2 or 3,
and a single unit of memory for each input port results in
perfect balance in the output queue lengths, and acceptable
latency. The QoS guarantees that these policies may provide
and their performance for different traffic patterns need to be
investigated in future studies.

REFERENCES

[1] C. Clos, “A study of non-blocking switching networks,” Bell System
Technical Journal, pp. 406–424, 1953.

[2] S. Iyer, A. A. Awadallah, and N. McKeown, “Analysis of a packet
switch with memories running slower than the line rate,” in Proc. IEEE
INFOCOM, 2000, pp. 529–537.

[3] W. Wang, L. Dong, and W. Wolf, “A distributed switch architecture with
dynamic load-balancing and parallel input-queued crossbars for terabit
switch fabrics,” in Proc. IEEE INFOCOM, 2002, pp. 352–361.

[4] C.-S. Chang, D.-S. Lee, and Y.-S. Jou, “Load balanced Birkhoff-von Neu-
mann switches, part I: one-stage buffering,” Computer Communications,
vol. 25, no. 6, pp. 611–622, 2002.

[5] M. Mitzenmacher, “The power of two choices in randomized load bal-
ancing,” IEEE Transactions on Parallel and Distributed Systems, vol. 12,
pp. 1094–1104, 2001.

[6] P. Kumar and S. Meyn, “The randomness in randomized load balancing,”
in Proc. of the 32nd IEEE Conference onDecision and Control, 15-17
1993, pp. 2730–2735 vol.3.

[7] S. Iyer and N. McKeown, “Analysis of the parallel packet switch archi-
tecture,” IEEE/ACM Transactions on Networking, pp. 314–324, 2003.

[8] M. Mitzenmacher, B. Prabhakar, and D. Shah, “Load balancing with
memory,” Annual IEEE Symposium on Foundations of Computer Science,
vol. 0, p. 799, 2002.

[9] D. Shah and B. Prabhakar, “The use of memory in randomized load
balancing,” in Proc. ISIT, 2002, p. 125.

APPENDIX

Theorem 1: (1, 1) policy is stable for all admissible i.i.d.
arrival processes.

Proof: Consider discrete instances of time when there
is either an arrival or a departure, since these are the only
times that the state of the system changes. We assume the
speedup is K. We further assume at each time instance up to
N packets arrive at the system according to N independent
Bernoulli processes and the arrival rate to the input port i
is δi (1 ≤ i ≤ N ). We denote by µi (1 ≤ i ≤ N ) the
service rate of output port i (1 ≤ i ≤ N ). We assume that
at most one packet can leave each queue at any given time
instance (this assumption can be easily relaxed). Hence, the
probability of having an arrival at any given time instant at
input i is δi∑N

i=1 δi+
∑N

i=1 µi
. Similarly, the probability that a

departure occurs from output port i at any instant of time is
µi∑N

i=1 δi+
∑N

i=1 µi
.

Let qk(n), q̃k(n) and q∗(n) represent the length of the k-th
output queue, the length of the output queue chosen by the
input i and length of the shortest output queue in the system
under policy (1, 1) at time instance n, respectively.

If n is an arrival instant, then the probability that under
(1, 1) policy input i chooses the shortest output queue, i.e.,
q̃i(n) = q∗(n), is at least 1/n. At each time instant, from
up to N input ports that are contending for the same output
port, at most K of them will be granted permission to direct
their packets to that output. If by λi we refer to the arrival
rate at output port i, then λi will be the summation of the
arrival rate of these s input ports, and

∑N
i=1 λi ≤

∑N
i=1 δi.

The probability of having a packet forwarded to output port
i is λi∑N

i=1 δi+
∑N

i=1 µi
. Moreover, by Lemma 1, proved in the

appendix, we will show that
N∑
i=1

λi × qi(n) ≤
N∑
i=1

δi × q̃i(n).

To prove that the algorithm is stable, using the result of Kumar
and Meyn[6], we show that for an N × N switch scheduled
using the (1, 1) policy, there is a negative expected single-step
drift in a Lyapunov function, V. In other words,

E[V (n+ 1)− V (n)|V (n)] ≤ ϵV (n) + k,

where k > 0 and ϵ > 0. Let V (n) be:

V (n) = V1(n) + V2(n),

where

V1(n) =
N∑
i=1

V1,i(n),



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 9

V1,i(n) = (q̃i(n)− q∗(n))2,

V2(n) =

N∑
i=1

q2i (n).

Since at most K packets can be enqueued at time instance
n+ 1 in q̃i when the speedup is K,

q̃i(n+ 1)− q̃i(n) ≤ K.

And at most one packet can leave q∗ at time instant n. So,

−q∗(n+ 1) + q∗(n) ≤ 1.

Therefore,

q̃i(n+ 1)− q∗(n+ 1) ≤ q̃i(n)− q∗(n) +K + 1.

Now consider:

E[V1(n+ 1)− V1(n)|V1(n)] =

1

N

1∑N
i=1 δi +

∑N
i=1 µi

×

N∑
i=1

δi × ((q̃i(n+ 1)− q∗(n+ 1))2 − (q̃i(n)− q∗(n))2)+

N∑
i=1

(1− 1

N

δi∑N
i=1 δi +

∑N
i=1 µi

)×

((q̃i(n+ 1)− q∗(n+ 1))2 − (q̃i(n)− q∗(n))2) ≤

− 1

N

1∑N
i=1 δi +

∑N
i=1 µi

×
N∑
i=1

δi(q̃i(n)− q∗(n))2+

N∑
i=1

(2(q̃i(n)− q∗(n)) +K + 1) ≤

− 1

N

1∑N
i=1 δi +

∑N
i=1 µi

×
N∑
i=1

δiV1,i(n)+

N∑
i=1

(2
√
V1,i(n) +K + 1)

So,
E[V1(n+ 1)− V1(n)|V1(n)] ≤

− 1

N

1∑N
i=1 δi +

∑N
i=1 µi

×
N∑
i=1

δiV1,i(n)+

N∑
i=1

2
√
V1,i(n) +N +NK.

And for V2,

E[V2(n+ 1)− V2(n)|V2(n)] =

N∑
i=1

λi∑N
i=1 δi +

∑N
i=1 µi

×(qi(n+1)−qi(n))(qi(n+1)−qi(n))+

N∑
i=1

µi∑N
i=1 δi +

∑N
i=1 µi

×(qi(n+1)−qi(n))(qi(n+1)−qi(n)) =

1∑N
i=1 δi +

∑N
i=1 µi

N∑
i=1

δi × (2q̃i(n) + 1)+

1∑N
i=1 δi +

∑N
i=1 µi

N∑
i=1

µi × (−2qi(n) + 1) =

1∑N
i=1 δi +

∑N
i=1 µi

×

(
N∑
i=1

δi × (1 + 2
√
V1,i + 2q∗(n)) +

N∑
i=1

µi − 2
N∑
i=1

µiqi(n)) =

1∑N
i=1 δi +

∑N
i=1 µi

×

[

N∑
i=1

δi × (1 + 2
√

V1,i)+

2q∗i (n)(
N∑
i=1

δi −
N∑
i=1

µi)+

2
N∑
i=1

µi(q
∗(n)− qi(n))].

So,
E[V2(n+ 1)− V2(n)|V2(n)] ≤∑N

i=1 δi∑N
i=1 δi +

∑N
i=1 µi

+

2
∑N

i=1 δi
√

V1,i(n)∑N
i=1 δi +

∑N
i=1 µi

+

1∑N
i=1 δi +

∑N
i=1 µi

× 2q∗(n)(
N∑
i=1

δi −
N∑
i=1

µi)+

1∑N
i=1 δi +

∑N
i=1 µi

× 2

N∑
i=1

µi(q
∗(n)− qi(n)).

Thus,
E[V (n+ 1)− V (n)|V (n)] ≤

− 1

N

1∑N
i=1 δi +

∑N
i=1 µi

×
N∑
i=1

δiV1,i(n)+

2
N∑
i=1

√
V1,i(n)(

δi∑N
i=1 δi +

∑N
i=1 µi

+ 1)+

∑N
i=1 δi∑N

i=1 δi +
∑N

i=1 µi

+N +NK+

1∑N
i=1 δi +

∑N
i=1 µi

× 2q∗(n)(
N∑
i=1

δi −
N∑
i=1

µi)+



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 10

1∑N
i=1 δi +

∑N
i=1 µi

× 2

N∑
i=1

µi(q
∗(n)− qi(n)).

Hence,
E[V (n+ 1)− V (n)|V (n)] ≤
N∑
i=1

−N(
∑N

i=1 δi +
∑N

i=1 µi)

δi
×

(
δi
√
(V1,i)

N(
∑N

i=1 δi +
∑N

i=1 µi)
− (

δi∑N
i=1 δi +

∑N
i=1 µi

+ 1)

)2

+(N + 1)

∑N
i=1 δi∑N

i=1 δi
∑N

i=1 µi

+N

∑N
i=1 δi

∑N
i=1 µi∑N

i=1 δi
+ 3N+

NK +
1∑N

i=1 δi +
∑N

i=1 µi

× 2q∗(n)(
N∑
i=1

δi −
N∑
i=1

µi)

+
1∑N

i=1 δi +
∑N

i=1 µi

× 2
N∑
i=1

µi(q
∗(n)− qi(n)).

So if we define

Ai =
δi

N(
∑N

i=1 δi +
∑N

i=1 µi)

Bi =
δi∑N

i=1 δi +
∑N

i=1 µi

+ 1

C = (N + 1)

∑N
i=1 δi∑N

i=1 δi
∑N

i=1 µi

+

N

∑N
i=1 δi

∑N
i=1 µi∑N

i=1 δi
+ 3N +NK

Then,
Ai ≥ 0 and Bi ≥ 0 and C ≥ 0

And,
E[V (n+ 1)− V (n)|V (n)] ≤

N∑
i=1

−(

√
V1,i

Ai
− Bi

A2
i

)2 + C (I)

+
1∑N

i=1 δi +
∑N

i=1 µi

× 2q∗(n)(
N∑
i=1

δi −
N∑
i=1

µi) (II)

+
1∑N

i=1 δi +
∑N

i=1 µi

× 2
N∑
i=1

µi(q
∗(n)− qi(n)) (II)

The following upper bounds are easily obtained: (I) ≤ C
(II) ≤ 0, since the traffic is admissible. (III) ≤ 0, by
definition of q∗(n). Suppose that V (n) is very large. If V1(n)
is very large, (I) will be negative, from which E[V (n+1)−
V (n)|V (n)] < −ϵ1 for V1(n) > L1 follows. Otherwise, if
V1(n) is not very large but V (n) is, then V2(n) should be
very large which implies that length of some output queue,
qi(n), is very large. If q∗(n) is not very large, then (III) will
be less than −C which is a bounded constant. If q∗(n) is also

large, then (II) will be less than −C. In both cases, it follows
that E[V (n+1)−V (n)|V (n)] < −ϵ2 for V2(n) > L2. Hence,
there exist L and ϵ such that E[V (n+1)−V (n)|V (n) is very
large] < −ϵ for V (n) > L.

Lemma 1:
∑N

i=1 λi × qi(n) ≤
∑N

i=1 δi × q̃i(n).
Proof: Let us define ρi,j

ρi,j =

{
δj input j chooses output i
0 otherwise

It immediately follows that

λi × qi(n) ≤
N∑
j=1

ρi,j × q̃j(n).

So,
N∑
i=1

λi × qi(n) ≤
N∑
i=1

N∑
j=1

ρi,j × q̃j(n).

But since the input ports can compete for only a single output
port at a time, the term ρi,j can be non-zero only for at most
N pairs of (i, j). It follows that

N∑
i=1

N∑
j=1

ρi,j × q̃j(n) =
N∑
i=1

δi × q̃i(n).

So,
N∑
i=1

λi × qi(n) ≤
N∑
i=1

δi × q̃i(n).



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 11

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Output Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(a)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(b)

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(c)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(d)

Fig. 7. CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d) 90th
Percentile of Output Queues’ Occupancy Over Time for Heavy Traffic and
No Speedup for (d,m) Policies and ideal policy in a 256*256 Switch.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(b)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Output Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(d)

Fig. 8. Zoomed CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d)
90th Percentile of Output Queues’ Occupancy Over Time for Heavy Traffic
and No Speedup for a 256*256 Switch.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 12

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Output Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(a)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(b)

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Output Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(c)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Output Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(d)

Fig. 9. CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d) 90th
Percentile of Output Queues’ Occupancy Over Time for Heavy Traffic and
Speedup of 2 for (d,m) Policies and ideal policy in a 256*256 Switch.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Output Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(b)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(c)

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(d)

Fig. 10. Zoomed CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d)
90th Percentile of Output Queues’ Occupancy Over Time for Heavy Traffic
and Speedup of 2 for a 256*256 Switch.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(b)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Output Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(d)

Fig. 11. CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d) 90th
Percentile of Output Queues’ Occupancy Over Time for Light Traffic and No
Speedup for (d,m) Policies and ideal policy in a 256*256 Switch.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(b)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Output Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(d)

Fig. 12. CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d) 90th
Percentile of Output Queues’ Occupancy Over Time for Light Traffic and
Speedup of 2 for (d,m) Policies and ideal policy in a 256*256 Switch.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 14

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Input Queues

 

 
(1,0)
(1,1)
(1,2)

(a) d=1, m=0,1,2

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Input Queues

 

 
(2,0)
(2,1)
(2,2)

(b) d=2, m=0,1,2

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Input Queues

 

 
(3,0)
(3,1)
(3,2)

(c) d=3, m=0,1,2

Fig. 13. Effect of Memory on CDF of Standard Deviation of Input Queues’
Occupancy over Time for (d,m) Policies for Heavy Traffic and No Speedup
For 256*256 Switches.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Input Queues

 

 
(1,0)
(1,1)
(1,2)

(a) d=1, m=0,1,2

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Input Queues

 

 
(2,0)
(2,1)
(2,2)

(b) d=2, m=0,1,2

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Input Queues

 

 
(3,0)
(3,1)
(3,2)

(c) d=3, m=0,1,2

Fig. 14. Effect of Memory on CDF of Avg. of Input Queues’ Occupancy
over Time for (d,m) Policies for Heavy Traffic and No Speedup For 256*256
Switches.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 15

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Input Queues

 

 
(1,0)
(1,1)
(1,2)

(a) d=1, m=0,1,2

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Input Queues

 

 
(2,0)
(2,1)
(2,2)

(b) d=2, m=0,1,2

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Input Queues

 

 
(3,0)
(3,1)
(3,2)

(c) d=3, m=0,1,2

Fig. 15. Effect of Memory on CDF of Max of Input Queues’ Occupancy
over Time for (d,m) Policies for Heavy Traffic and No Speedup For 256*256
Switches.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Input Queues

 

 
(1,0)
(1,1)
(1,2)

(a) d=1, m=0,1,2

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Input Queues

 

 
(2,0)
(2,1)
(2,2)

(b) d=2, m=0,1,2

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Input Queues

 

 
(3,0)
(3,1)
(3,2)

(c) d=3, m=0,1,2

Fig. 16. Effect of Memory on CDF of 90th Percentile of Input Queues’
Occupancy over Time for (d,m) Policies for Heavy Traffic and No Speedup
For 256*256 Switches.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 16

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Input Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(a)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Input Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(b)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(c)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(d)

Fig. 17. CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d) 90th
Percentile of Input Queues’ Occupancy Over Time for Heavy Traffic and No
Speedup for (d,m) Policies and ideal policy in a 256*256 Switch.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg of the Occupancy of Input Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(a)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(b)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(c)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(d)

Fig. 18. CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d) 90th
Percentile of Input Queues’ Occupancy Over Time for Heavy Traffic and
Speedup of 2 for (d,m) Policies and ideal policy in a 256*256 Switch.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 17

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(a)

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(b)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(c)

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(d)

Fig. 19. CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d) 90th
Percentile of Input Queues’ Occupancy Over Time for Light Traffic and No
Speedup for (d,m) Policies and ideal policy in a 256*256 Switch.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Input Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(b)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Input Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(d)

Fig. 20. Zoomed CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d)
90th Percentile of Input Queues’ Occupancy Over Time for Light Traffic and
No Speedup for (d,m) Policies and ideal policy in a 256*256 Switch.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 18

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(a)

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(b)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(c)

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)
ideal

(d)

Fig. 21. CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d) 90th
Percentile of Input Queues’ Occupancy Over Time for Light Traffic and
Speedup of 2 for (d,m) Policies and ideal policy in a 256*256 Switch.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Input Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max of the Occupancy of Input Queues

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90th Percentile of the Occupancy of Input Queues

 

 

(1,1)
(2,1)
(3,1)
(20,1)
(100,1)
(256,0)

(d)

Fig. 22. Zoomed CDF of (a) Avg., (b) Standard Deviation, (c) Max and (d)
90th Percentile of Input Queues’ Occupancy Over Time for Light Traffic and
Speedup of 2 for (d,m) Policies and ideal policy in a 256*256 Switch.



University of Toronto SNL Technical Report TR10-SN-UT-07-10-21. 19

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues for 64*64 Switches

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(64,0)
ideal

(a)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues for 64*64 Switches

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(64,0)
ideal

(b)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues for 64*64 Switches

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(64,0)
ideal

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation of the Occupancy of Output Queues for 64*64 Switches

 

 
(1,1)
(2,1)
(3,1)
(20,1)
(64,0)
ideal

(d)

Fig. 23. CDF of Standard Deviation of Output Queues’ Occupancy over Time for (a) Heavy Traffic and No Speedup, (b) Heavy Traffic and Speedup of 2,
(c) Light Traffic and No Speedup, and (d) Light Traffic and Speedup of 2 for a 64*64 Switch.


