
Smart Memories: A Configurable Processor Architecture for

 High Productivity Parallel Programming
A. Solomatnikov, A. Firoozshahian, F. Labonte, M. Horowitz,

 C. Kozyrakis, K. Olukotun, K. Mai
Computer Systems Laboratory

Stanford University
Stanford, CA, 94305

{sols,aminf13,flabonte, horowitz}@stanford.edu, christos@ee.stanford.edu,
kunle@ogun.stanford.edu, demon@stanford.edu

Abstract: With single processor systems running into
instruction-level parallelism (ILP) limits and fundamental
VLSI constraints, multiprocessor chips provide a realistic
path towards scalable performance by allowing one to take
advantage of thread-level (TLP) and data-level parallelism
(DLP) in emerging applications. Nevertheless, parallel
architectures are limited by the difficulty of parallel
application development. This challenge has led to the
invention of new programming models to simplify the way
in which parallel programs are developed correctly and
efficiently. Smart Memories is a scalable, hierarchical
architecture which, using a modular design, addresses the
process technology issues, such as power consumption and
wire latency. Its reconfigurability allows executing
applications described in different programming models
with high performance. Simulations have shown that
considerable speed ups (2x to 10x) can be achieved over a
broad range of applications, while a small amount of
power and area penalty is tolerated for reconfiguration.

Keywords: Smart Memories, Reconfiguration, Parallel
programming, streaming, memory system, transactional
programming

Introduction
Over the past two decades, microprocessors have doubled
in performance every 18 months without the need for
substantial changes to the underlying instruction-set
architecture. Historically, faster transistors, deeper
pipelining, and increased instruction level parallelism (ILP)
have been the major factors in increasing processor
performance. However, for performance to continue to
scale over the coming decades, significant architectural
changes are required, since two of these factors--increased
ILP and deeper pipelining--have been exhausted [4].
Architectural change is also being driven by process
technology that is becoming wire and power-limited, rather
than device-count limited [2]. Future processors should
exploit explicit parallelism, be modular, minimize the use
of global wires, and exploit locality for power efficiency.
Fortunately, most emerging applications, such as cognitive
reasoning, computational biology, and large-scale
enterprise services, have large amounts of explicit task-

and/or data-level parallelism that can be mapped on such
parallel architectures.

One of the key challenges of parallel systems is how to
program them. Existing parallel programming approaches
are counterproductive for all but a few expert users, since
they require the programmer to manage concurrency
directly by creating and synchronizing parallel threads.
This difficulty stems from the need to achieve the often
conflicting goals of functional correctness and high
performance. For example, with shared-memory
programming, a small number of coarse-grain locks make it
simpler to correctly order accesses to shared objects, while
many fine-grain locks allow higher performance by
reducing the amount of time wasted in accessing locks.

Moreover, conventional architectural techniques for
increasing performance--caching and pre-fetching--are not
very successful for most of data-intensive applications. The
little global data reuse and producer-consumer patterns in
memory accesses which are not captured by caches are
considered the main reasons for this poor performance.

Stanford researchers have proposed two new models to
address parallel programming productivity. The first model
is “stream programming,” [3] which constructs programs as
collections of computational kernels, linked in data-flow
patterns. This type of programming is appropriate for data-
intensive, regular applications, such as signal processing,
telecommunications, and scientific computing. Stream
programming exposes the data parallelism and explicit
communication as well as locality patterns. The second
model is “transactional programming,” [6] which views
programs as collections of database-like, atomic
transactions. Transactions provide a single abstraction for
the parallelism, synchronization, communication, and
failure recovery. Therefore, transactional programming is
appropriate for irregular applications with unstructured
control and communication patterns, such as enterprise
services and cognitive tasks. Considering the substantial
dissimilarity between these programming models, as well
as the different levels of parallelism they aim to exploit,
designing an architecture that can reuse hardware resources

to efficiently support them presents an interesting
challenge.

Smart Memories Architecture
Figure 1 illustrates Smart Memories hierarchical
architecture, which integrates a large number of processors
and memory blocks on a single chip. The system consists
of Tiles, each with two VLIW cores, several reconfigurable
memory blocks, and a crossbar connecting them. Tiles are
placed in groups of four, forming Quads. Tiles in the Quad
are connected via a Quad network and share a common
interface for communicating to the outside world. A shared
protocol controller provides support for the Tiles by
moving data in and out of the local memory blocks and
implementing memory protocols (such as cache coherence)
in different execution modes. Quads are then connected to
each other and to the off-chip interfaces using a mesh-like
network.

The key feature of Smart Memories that addresses
technology issues lies in its hierarchical architecture. The
modularity of the system addresses the design complexity
concerns and makes the architecture an excellent target for
scalability. The system is expanded simply by adding
elements at the top level of the hierarchy (Quads),
increasing both the processing and memory resources.
Using fast local memories and high-bandwidth
interconnects to connect elements at every level of the
hierarchy tolerates the increasingly important wire-delay
problem in modern architectures. Power efficiency is
achieved using simple VLIW cores and selectively turning
off the unnecessary components in the system.

Smart Memories attempts to exploit different levels of
parallelism in the application, which might be orthogonal to
one another: VLIW cores tackle the conventional levels of
instruction level parallelism (ILP) in most applications,
while multiple execution engines target the more explicit
levels of parallelism at the data and task levels. Data-level
parallelism is extracted by mapping computational kernels
on the CPU cores, which follow producer-consumer
patterns to pass streams of data, while task-level parallelism
can be exploited by either assigning standard threads to

each processor or by running atomic transactions, with or
without an explicit order being assigned to them.

Reconfigurable Memory System
With the exception for ILP, which is utilized within the
processors, the other two more explicit levels of parallelism
cannot be exploited efficiently without appropriate support
from the memory system. The memory system is
responsible for not only keeping the execution units busy
by moving data in and out of the local memories, but also
for tracking of the data sharing and dependencies and
detecting dependence violations. In Smart Memories, the
memory system can configure itself as a hierarchy of
caches for capturing temporal and spatial locality in
memory accesses, which is used when running threads or
transactions in task-parallel applications. The system also
provides a mechanism for tracking data dependencies and
detecting violations. Alternatively, the memory system can
be configured as a series of local memories or FIFOs,
supported with DMA engines, which is suitable for running
data-parallel applications with producer-consumer locality.

The memory system consists of three major reconfigurable
blocks, highlighted in Figure 1. The memory interface
coordinates accesses from processor cores to local
memories and allows reconfiguration of basic memory
accesses; a basic operation, such as a Store instruction, can
treat a memory word differently in transactional mode than
normal multi-threaded mode. This interface also can
broadcast accesses to a set of local memory blocks; for
example, when accessing multiple ways of a cache, the
access is concurrently sent to all the blocks forming the
cache ways.

Figure 2.a shows the block diagram of a local memory mat.
Each memory mat has an array of data words, each
associated with a few meta-data bits. Meta-data bits store
the status of that data word in any particular configuration
of the memory system and their state is considered in every
memory access; access can be discarded based on the status
of these bits. For example, when mats are configured as a
cache, these bits are used to store the status of a cache line
and access is discarded if the status indicates an invalid
line. A programmable logic updates the state of these bits

Figure 1. Smart Memories architecture hierarchy

atomically, simultaneous with access to the data word. A
built-in comparator and a set of pointers allow the mat to be
used as a tag storage (for cache) or as a FIFO. Mats are
connected to each other through an inter-mat network that
communicates control information when they are accessed
as a group.

Local memory blocks require a different kind of support
depending on the programming model. The protocol
controller is a reconfigurable control engine which allows
executing a sequence and/or a combination of basic
operations to support memory mats. These operations
include: loading and storing data words (or cache lines)
into mats, manipulating meta-data bits, keeping track of
outstanding requests from each Tile, and broadcasting data
or control information to Tiles within the Quad. This
controller is connected to a network port for sending and
receiving requests to/from other Quads or off-chip
interfaces.

Support for Multiple Programming Models
Smart Memories architecture supports three major
programming models that use the underlying memory
system differently: conventional multi-threading in a cache-
coherent shared-memory environment, streaming and
transactional programming

In the conventional shared-memory execution mode,
memory mats are configured as instruction and data caches,
with support for the fine-grain synchronization operations.
The protocol controller acts as a cache coherence engine,
which refills the caches and enforces coherence. Low
latency in servicing cache misses is achieved by merging
requests from different processors whenever possible and
trying to satisfy the requests by conducting local cache-to-
cache transfers between the Tiles, without crossing the
Quad boundary. High bandwidth is achieved by keeping
track of a relatively high number of outstanding requests
and processing them in parallel.

Streaming [3] is the second execution model supported by
the Smart Memories. In this mode, memory mats are used
as Stream Register Files (SRF) to store streams of data
locally or as FIFO buffers to pass the streams from one
processor to the other. They also may be used as
scratchpads or local instruction memory. The protocol
controller acts as a high-throughput DMA engine with
support for multiple DMA transfer modes, such as stride or
indexed gather/scatter.

Transactional programming [6] is the third major
programming model supported by the Smart Memories. In
this mode, memory mats are configured as local caches for
processors which can store uncommitted transaction state
and trace the data dependencies. Meta-data bits in memory
mats are used for marking words to detect dependency
violations that might occur between the transactions. At
commit time, the protocol controller broadcasts all the
modifications of the committing transaction to other Tiles
and detects any possible dependence violations.

Status, Results and Summary
Currently, we have developed a functional simulator for the
system, which can simulate an arbitrary configuration of
processors, contexts and memory hierarchy. We have also
completed Verilog RTL for the Tile, which at this time is
being verified. We are also designing the protocol
controller and the rest of the system.

Figure 3 shows the speed ups for two probabilistic
inference applications developed in multi-threaded mode,
while Figure 4 shows the performance of applications
developed using the transactional model. As demonstrated,
Smart Memories provides significant speed ups (2x to 10x)
over sequential architectures for a variety of applications
[1, 6]. Furthermore, using a chip prototype, it has been
shown that compared to normal custom memory arrays,
configurable memory blocks can be efficiently
implemented with only a small area and power penalty
(Figure 2.b, [5]).

(b) Power and area breakdown (a) Block diagram
Figure 2. Reconfigurable memory mat

In summary, Smart Memories is a scalable multiprocessor
system designed to efficiently support a wide range of
applications. Its modularity and hierarchical design address
modern technology concerns, such as design complexity,
power efficiency and wire delay. Its reconfigurable
memory system is the key feature in supporting different
programming models, ranging from the conventional
shared-memory model to more innovative, recently
developed models, such as streaming and transactions, each
suitable for a large class of emerging applications. Overall,
the results suggest that Smart Memories is a promising
architecture for next-generation, general purpose
computing systems that can achieve high productivity and
high performance.

The Smart Memories project has been supported by
DARPA IPTO through the PCA program grants F29601-
01-2-0085 and F29601-03-2-0117.

References
1. K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, M.

Horowitz, “Smart Memories: A Modular
Reconfigurable Architecture,” 27th International.
Symposium on Computer Architecture, June 2000.

2. R. Ho, K. Mai, and M. Horowitz, “Efficient on-chip
global interconnects,” IEEE Symposium on VLSI
Circuits, June 2003.

3. U. Kapasi, S. Rixner, W. Dally, B. Khailany, J. Ahn,
P. Mattson, J. Owens, “Programmable Stream
Processors,” IEEE Computer, vol.36, no. 8, pp 54-62,
August 2003.

4. M. Horowitz, W. Dally, “How Scaling Will Change
Processor Architecture,” International Solid States
Circuits Conference, February 2004.

5. K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, M.
Horowitz, “Architecture and Circuit Techniques for a
Reconfigurable Memory Block,” International Solid
States Circuits Conference, February 2004.

6. L. Hammond, V. Wong, M. Chen, B. Hertzberg, B.
Carlstrom, J. Davis, M. Prabhu, H. Wijaya, C.
Kozyrakis, K. Olukotun, “Transactional Memory
Coherence and Consistency,” 31st International.
Symposium on Computer Architecture, June 2004.

Figure 3. Speed ups for cognitive tasks

0
1

2
3

4
5

6
7

8
9

10

1 thread/CPU 2 threads/CPU 4 thread/CPU 1 thread/CPU 2 threads/CPU 4 threads/CPU

w ater pigs

Sp
ee

du
p 1 CPU

2 CPUs
4 CPUs
8 CPUs

Figure 4. Transactional programming performance

0

1

2

3

4

5

6

7

8

SPECjbb mpeg2dec Raytrace Moldyn

Sp
ee

du
p 1 CPU

2 CPUs
4 CPUs
8 CPUs

