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Abstract: With  single processor systems running into 
instruction-level parallelism (ILP) limits and fundamental 
VLSI constraints, multiprocessor chips provide a realistic 
path towards scalable performance by allowing one to take 
advantage of thread-level (TLP) and data-level parallelism 
(DLP) in emerging applications. Nevertheless, parallel 
architectures are limited by the difficulty of parallel 
application development. This challenge has led to the 
invention of new programming models to simplify the way 
in which parallel programs are developed correctly and 
efficiently. Smart Memories is a scalable, hierarchical 
architecture which, using a modular design, addresses the 
process technology issues, such as power consumption and 
wire latency. Its reconfigurability allows executing 
applications described in different programming models 
with high performance. Simulations have shown that 
considerable speed ups (2x to 10x) can be achieved over a 
broad range of applications, while a small amount of 
power and area penalty is tolerated for reconfiguration. 
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Introduction 
Over the past two decades, microprocessors have doubled 
in performance every 18 months without the need for 
substantial changes to the underlying instruction-set 
architecture. Historically, faster transistors, deeper 
pipelining, and increased instruction level parallelism (ILP) 
have been the major factors in increasing processor 
performance. However, for performance to continue to 
scale over the coming decades, significant architectural 
changes are required, since two of these factors--increased 
ILP and deeper pipelining--have been exhausted [4].  
Architectural change is also being driven by process 
technology that is becoming wire and power-limited, rather 
than device-count limited [2].  Future processors should 
exploit explicit parallelism, be modular, minimize the use 
of global wires, and exploit locality for power efficiency. 
Fortunately, most emerging applications, such as cognitive 
reasoning, computational biology, and large-scale 
enterprise services, have large amounts of explicit task- 

and/or data-level parallelism that can be mapped on such 
parallel architectures. 
 
One of the key challenges of parallel systems is how to 
program them. Existing parallel programming approaches 
are counterproductive for all but a few expert users, since 
they require the programmer to manage concurrency 
directly by creating and synchronizing parallel threads. 
This difficulty stems from the need to achieve the often 
conflicting goals of functional correctness and high 
performance. For example, with shared-memory 
programming, a small number of coarse-grain locks make it 
simpler to correctly order accesses to shared objects, while 
many fine-grain locks allow higher performance by 
reducing the amount of time wasted in accessing locks.  
 
Moreover, conventional architectural techniques for 
increasing performance--caching and pre-fetching--are not 
very successful for most of data-intensive applications. The 
little global data reuse and producer-consumer patterns in 
memory accesses which are not captured by caches are 
considered the main reasons for this poor performance. 
 
Stanford researchers have proposed two new models to 
address parallel programming productivity. The first model 
is “stream programming,” [3] which constructs programs as 
collections of computational kernels, linked in data-flow 
patterns. This type of programming is appropriate for data-
intensive, regular applications, such as signal processing, 
telecommunications, and scientific computing. Stream 
programming exposes the data parallelism and explicit 
communication as well as locality patterns. The second 
model is “transactional programming,” [6] which views 
programs as collections of database-like, atomic 
transactions. Transactions provide a single abstraction for 
the parallelism, synchronization, communication, and 
failure recovery. Therefore, transactional programming is 
appropriate for irregular applications with unstructured 
control and communication patterns, such as enterprise 
services and cognitive tasks. Considering the substantial 
dissimilarity between these programming models, as well 
as the different levels of parallelism they aim to exploit, 
designing an architecture that can reuse hardware resources 



to efficiently support them presents an interesting 
challenge. 

Smart Memories Architecture 
Figure 1 illustrates Smart Memories hierarchical 
architecture, which integrates a large number of processors 
and memory blocks on a single chip. The system consists 
of Tiles, each with two VLIW cores, several reconfigurable 
memory blocks, and a crossbar connecting them. Tiles are 
placed in groups of four, forming Quads. Tiles in the Quad 
are connected via a Quad network and share a common 
interface for communicating to the outside world. A shared 
protocol controller provides support for the Tiles by 
moving data in and out of the local memory blocks and 
implementing memory protocols (such as cache coherence) 
in different execution modes. Quads are then connected to 
each other and to the off-chip interfaces using a mesh-like 
network. 
 
The key feature of Smart Memories that addresses 
technology issues lies in its hierarchical architecture. The 
modularity of the system addresses the design complexity 
concerns and makes the architecture an excellent target for 
scalability. The system is expanded simply by adding 
elements at the top level of the hierarchy (Quads), 
increasing both the processing and memory resources. 
Using fast local memories and high-bandwidth 
interconnects to connect elements at every level of the 
hierarchy tolerates the increasingly important wire-delay 
problem in modern architectures. Power efficiency is 
achieved using simple VLIW cores and selectively turning 
off the unnecessary components in the system.  
 
Smart Memories attempts to exploit different levels of 
parallelism in the application, which might be orthogonal to 
one another: VLIW cores tackle the conventional levels of 
instruction level parallelism (ILP) in most applications, 
while multiple execution engines target the more explicit 
levels of parallelism at the data and task levels. Data-level 
parallelism is extracted by mapping computational kernels 
on the CPU cores, which follow producer-consumer 
patterns to pass streams of data, while task-level parallelism 
can be exploited by either assigning standard threads to 

each processor or by running atomic transactions, with or 
without an explicit order being assigned to them.  

Reconfigurable Memory System 
With the exception for ILP, which is utilized within the 
processors, the other two more explicit levels of parallelism 
cannot be exploited efficiently without appropriate support 
from the memory system. The memory system is 
responsible for not only keeping the execution units busy 
by moving data in and out of the local memories, but also 
for tracking of the data sharing and dependencies and 
detecting dependence violations. In Smart Memories, the 
memory system can configure itself as a hierarchy of 
caches for capturing temporal and spatial locality in 
memory accesses, which is used when running threads or 
transactions in task-parallel applications. The system also 
provides a mechanism for tracking data dependencies and 
detecting violations. Alternatively, the memory system can 
be configured as a series of local memories or FIFOs, 
supported with DMA engines, which is suitable for running 
data-parallel applications with producer-consumer locality. 
 
The memory system consists of three major reconfigurable 
blocks, highlighted in Figure 1. The memory interface 
coordinates accesses from processor cores to local 
memories and allows reconfiguration of basic memory 
accesses; a basic operation, such as a Store instruction, can 
treat a memory word differently in transactional mode than 
normal multi-threaded mode. This interface also can 
broadcast accesses to a set of local memory blocks; for 
example, when accessing multiple ways of a cache, the 
access is concurrently sent to all the blocks forming the 
cache ways. 
 
Figure 2.a shows the block diagram of a local memory mat. 
Each memory mat has an array of data words, each 
associated with a few meta-data bits. Meta-data bits store 
the status of that data word in any particular configuration 
of the memory system and their state is considered in every 
memory access; access can be discarded based on the status 
of these bits. For example, when mats are configured as a 
cache, these bits are used to store the status of a cache line 
and access is discarded if the status indicates an invalid 
line. A programmable logic updates the state of these bits 

Figure 1. Smart Memories architecture hierarchy 



atomically, simultaneous with access to the data word. A 
built-in comparator and a set of pointers allow the mat to be 
used as a tag storage (for cache) or as a FIFO. Mats are 
connected to each other through an inter-mat network that 
communicates control information when they are accessed 
as a group. 
 
Local memory blocks require a different kind of support 
depending on the programming model. The protocol 
controller is a reconfigurable control engine which allows 
executing a sequence and/or a combination of basic 
operations to support memory mats. These operations 
include: loading and storing data words (or cache lines) 
into mats, manipulating meta-data bits, keeping track of 
outstanding requests from each Tile, and broadcasting data 
or control information to Tiles within the Quad. This 
controller is connected to a network port for sending and 
receiving requests to/from other Quads or off-chip 
interfaces.  

Support for Multiple Programming Models 
Smart Memories architecture supports three major 
programming models that use the underlying memory 
system differently: conventional multi-threading in a cache-
coherent shared-memory environment, streaming and 
transactional programming 
 
In the conventional shared-memory execution mode, 
memory mats are configured as instruction and data caches, 
with support for the fine-grain synchronization operations. 
The protocol controller acts as a cache coherence engine, 
which refills the caches and enforces coherence. Low 
latency in servicing cache misses is achieved by merging 
requests from different processors whenever possible and 
trying to satisfy the requests by conducting local cache-to-
cache transfers between the Tiles, without crossing the 
Quad boundary. High bandwidth is achieved by keeping 
track of a relatively high number of outstanding requests 
and processing them in parallel. 
 

Streaming [3] is the second execution model supported by 
the Smart Memories. In this mode, memory mats are used 
as Stream Register Files (SRF) to store streams of data 
locally or as FIFO buffers to pass the streams from one 
processor to the other. They also may be used as 
scratchpads or local instruction memory. The protocol 
controller acts as a high-throughput DMA engine with 
support for multiple DMA transfer modes, such as stride or 
indexed gather/scatter. 
 
Transactional programming [6] is the third major 
programming model supported by the Smart Memories. In 
this mode, memory mats are configured as local caches for 
processors which can store uncommitted transaction state 
and trace the data dependencies. Meta-data bits in memory 
mats are used for marking words to detect dependency 
violations that might occur between the transactions. At 
commit time, the protocol controller broadcasts all the 
modifications of the committing transaction to other Tiles 
and detects any possible dependence violations. 

Status, Results and Summary 
Currently, we have developed a functional simulator for the 
system, which can simulate an arbitrary configuration of 
processors, contexts and memory hierarchy. We have also 
completed Verilog RTL for the Tile, which at this time is 
being verified. We are also designing the protocol 
controller and the rest of the system. 
 
Figure 3 shows the speed ups for two probabilistic 
inference applications developed in multi-threaded mode, 
while Figure 4 shows the performance of applications 
developed using the transactional model. As demonstrated, 
Smart Memories provides significant speed ups (2x to 10x) 
over sequential architectures for a variety of applications 
[1, 6]. Furthermore, using a chip prototype, it has been 
shown that compared to normal custom memory arrays, 
configurable memory blocks can be efficiently 
implemented with only a small area and power penalty 
(Figure 2.b, [5]).  
 

(b) Power and area breakdown (a) Block diagram 
Figure 2. Reconfigurable memory mat 



In summary, Smart Memories is a scalable multiprocessor 
system designed to efficiently support a wide range of 
applications. Its modularity and hierarchical design address 
modern technology concerns, such as design complexity, 
power efficiency and wire delay. Its reconfigurable 
memory system is the key feature in supporting different 
programming models, ranging from the conventional 
shared-memory model to more innovative, recently 
developed models, such as streaming and transactions, each 
suitable for a large class of emerging applications. Overall, 
the results suggest that Smart Memories is a promising 
architecture for next-generation, general purpose 
computing systems that can achieve high productivity and 
high performance. 
 
The Smart Memories project has been supported by 
DARPA IPTO through the PCA program grants F29601-
01-2-0085 and F29601-03-2-0117. 
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Figure 3. Speed ups for cognitive tasks
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Figure 4. Transactional programming performance
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