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ABSTRACT 

Building hardware prototypes for computer architecture research 

is challenging. Unfortunately, development of the required 

software tools (compilers, debuggers, runtime) is even more 

challenging, which means these systems rarely run real 

applications. To overcome this issue, when developing our 

prototype platform, we used the Tensilica processor generator to 

produce a customized processor and corresponding software tools 

and libraries. While this base processor was very different from 

the streamlined custom processor we initially imagined, it allowed 

us to focus on our main objective—the design of a reconfigurable 

CMP memory system—and to successfully tape out an 8-core 

CMP chip with only a small group of designers. One person was 

able to handle processor configuration and hardware generation, 

support of a complete software tool chain, as well as developing 

the custom runtime software to support two different 

programming models. Having a sophisticated software tool chain 

not only allowed us to run more applications on our machine, it 

once again pointed out the need to use optimized code to get an 

accurate evaluation of architectural features.   

Categories and Subject Descriptors 

C.1.2 [Processor Architectures]: Multiple Data Stream 

Architectures (Multiprocessors) – Parallel Processors; C.4 

[Performance of Systems]: Design studies; C.1.2 [Computer 

System Implementation]: VLSI Systems  

General Terms 

Performance, Design, Experimentation 

Keywords 

Reconfigurable architecture, configurable/extensible processor 

generator, memory system architecture, computer architecture 

prototyping, VLSI design 

1. INTRODUCTION AND MOTIVATION 
Our expectations of the capability of software development 

environments continue to grow with time. Compilers, runtime 

environments, debuggers and performance analysis tools are 

critical for creating high-performance applications. As Kunz 

showed in [23], eliminating the small accidental sharing that 

happens in most parallel applications can have a much larger 

effect on application performance than most architectural 

techniques—removing sharing is always better than trying to 

make sharing more efficient. This fact is a challenge for 

researchers working on innovative architectures. Detection and 

debugging of false sharing and other software issues requires a 

strong set of software tools that are hard and time consuming to 

develop. Indeed, all computer architecture projects face a 

dilemma: any architecture that is ambitious and truly novel by 

definition requires enormous software development effort to make 

it useable; on the other hand, architectures that can mostly reuse 

existing software tools are often incremental in nature. As result, 

many research projects that try to explore novel architectural ideas 

end up spending significant effort on software: RAW [46], 

Imagine [3][21], TRIPS [13] and TCC [16] are all recent 

examples. However, even very significant software effort does not 

guarantee that the performance of the generated software is good 

enough to show the advantages of a new architecture, and as a 

result researchers often resort to hand-optimization of benchmarks 

[13].  

We recently completed an implementation of the Smart Memories 

CMP, which faced similar challenges [38]. The goal of the Smart 

Memories project was to design a reconfigurable architecture that 

could support a wide variety of memory models.  To test its 

flexibility we implemented conventional cache-coherent shared 

memory [1], streaming [3][21] and transactions [16][17]. Initially 

we planned to have reconfigurability in both the processor and the 

memory system. After working on this path for a while, we 

realized that the development of a new machine and instruction 

set architecture along with the associated software stack was 

going to be much too large a task for the small group of students 

involved with the project. Instead we decided to concentrate on 

memory system architecture and took the unusual path of trying to 

leverage the Tensilica system and its associated software tools 

[14] for the processor portion of our research architecture 

implementation. This approach let us focus on the core feature of 

the project—reconfigurable memory system—and to successfully 

complete the test chip design, with minimal effort (one person) 

devoted to the configuration and generation of the processor 

hardware and software tools. While the use of Tensilica limited 

our flexibility, it provided a strong software development 

environment and greatly increased confidence in our architectural 
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performance evaluation. 

However, adapting the Tensilica processor to our architecture was 

challenging.  As we describe later in the paper there were many 

issues to resolve, but the biggest disconnect was the fact that at 

the time we started, Tensilica did not have a method of building a 

coherent memory system, and we wanted our memory system to 

support sophisticated memory operations that required coherence.  

Fortunately, the extensibility of the Tensilica platform allowed us 

to implement the range of memory operations that we needed, and 

the accompanying software system allowed us to create a number 

of applications to evaluate our new hardware features.  

This paper reviews the history of Smart Memories development, 

the decisions made during this process and the lessons learned, as 

well as the current status and results. We feel this story makes a 

compelling case for using extensible processors in future 

architecture research. To understand the advantages of this 

approach, the next section reviews how other large computing 

systems research projects have addressed the software 

development question. With this background, Section 3 then 

briefly talks about the history of the Smart Memories project and 

reviews the key architectural features needed to support our 

flexible memory system. We faced several challenges when we 

switched to a Tensilica processor, so Section 4 first provides an 

overview of the Tensilica environment, and then Section 5 

describes how we connected the processor to the flexible memory 

system, and how we used register windows to quickly restore 

shadow state.   Section 5 also discusses how using an optimizing 

software pipeline changed some of our performance results. Our 

concluding remarks are presented in Section 6. 

2. RELATED WORK 
From MIPS to TRIPS, many architectural research projects 

developed custom instruction set architectures that required not 

only the development of new compilers but new compiler 

technologies. Early RISC projects at Berkeley and Stanford 

developed the ISA in parallel with compiler and operating system 

work. These efforts led to many advanced compiler techniques 

including instruction scheduling and register allocation [8][36]. 

VLIW architectures further pushed instruction scheduling and 

relied heavily on optimizing compilers to achieve high 

performance [11][18][22][28][39]. Similarly, dataflow 

architectures required sophisticated software systems [4][44]. The 

TRIPS project is the latest project in this vein, which designed the 

EDGE architecture along with the superblock scheduling compiler 

that it required [40]. 

Some of the most innovative machines from an architectural 

standpoint require more than just a custom compiler, since they 

are based on a different programming model. Some examples 

include systolic computing by CMU’s iWarp [7], message driven 

computing by MIT’s J-Machine [35], stream processing by MIT 

Raw [46] and Stanford’s Imagine [21].  Other projects have 

adopted existing instruction set architectures (ISA) while 

exploring multi-processor architectures. For example, Stanford 

DASH and FLASH used commercial off-the-shelf MIPS 

processors and designed multi-processor memory systems 

connected to the processor via a standard processor bus [26][24]. 

Other projects that used existing ISA or processor designs are 

Raksha [20] and Wisconsin Wind Tunnel [34]. 

An alternative approach is to use an existing processor 

architecture, but modify or add some instructions to let it access 

new architectural features.  An early example is the Sparcle 

processor, which was developed and used for the MIT Alewife 

project [2].  Recently there have been a number of companies that 

have created extensible microprocessor IP, including Tensilica 

[14] [49][19], MIPS, and ARM.  Other companies have created 

systems that generate processors and software systems from a 

high level ISA description.  These solutions have the potential to 

provide the advantages of a high-quality software environment 

while preserving the ability to modify the processor architecture.  

Given the small design team in the Smart Memories project, we 

decided that this was the only feasible way to accomplish our 

goals. While this approach is not perfect, as the rest of the paper 

shows, it has significant advantages. The following sections 

describe our experience in the Smart Memory project using this 

approach. 

3. SMART MEMORIES, VERSION I 
Recently, with the shift towards multi-core chips, computer 

architecture research has focused on parallel architectures, as well 

as the programming models and software systems necessary to 

facilitate the wide adoption of such architectures. The goal of the 

Smart Memories project was to design a universal programming 

platform that can support three popular programming models that 

were explored by other researchers.  One of these is the 

conventional cache-coherent shared memory model [1]. Another 

is the stream programming model implemented by the MIT RAW 

and Stanford Imagine [45][46][3][21]. These projects developed 

streaming languages [48], associated software tool chains and 

even application benchmarks written using the stream 

programming model. Transactional memory was another memory 

model that we wanted to support [17][16]. The transactional 

memory programming model was proposed to simplify 

parallelization of software using a hardware transactional 

mechanism, which builds upon work on thread-level speculation 

(TLS) [15]. This work involves designing an application 

programming interface (API) for transactional memory hardware 

and runtime system [32][5] and developing application 

benchmarks that can be used to evaluate transactional memory 

architectures [33]. Initially, the architecture was designed to 

support TLS. Later in the implementation process we decided 

instead to complete the implementation of a more general 

transactional memory model, transactional coherence and 

consistency (TCC) [16]. 

To provide functional flexibility, Smart Memories consists of a 

hierarchical reconfigurable architecture.  The basic building 

blocks include a reconfigurable memory system, plus interconnect 

and processing elements [29]. The chip is divided into tiles, and 

four adjacent tiles are grouped into quads (Figure 1a). Quads 

communicate with each other and with off-chip interfaces via a 

dynamically routed global on-chip network. Tiles inside the quad 

share the network port and protocol controller. Each tile (Figure 

1b) contains 16 memory blocks, which are connected to the 

processor through a crossbar. Each memory block (Figure 1c) is 

also reconfigurable [30]. 

In addition to an SRAM data array, memory blocks also have a 

dual-ported metadata array that stores control state associated with 

the data and some programmable logic that enables a set of 

customizable atomic read-modify-write operations for this control 

state. Each memory block also contains a comparator, so it can be 

used as tag memory, and FIFO pointers. Using these features and 

a flexible crossbar interconnect, a set of memory blocks in the tile 



can be configured to function as set-associative caches, directly 

addressable local memories (scratchpads) or as hardware FIFOs. 

The quad protocol controller performs all actions required for data 

movement functionality such as cache line refills, streaming 

DMAs or transaction ordering. It is also reconfigurable to support 

different modes of operation of the memory system such as cache 

coherence or thread-level speculation. 

In its original version, the processor (Figure 1d) was also designed 

to be configurable, with three modes of operation. In multi-

threaded mode the processor behaves as 2 processors, each 

running independent threads of instructions, and each thread 

executing up to 2 instructions per cycle. Multi-threaded mode 

would be a good match for applications with abundant thread-

level parallelism (TLP). In VLIW mode the processor would 

execute a single instruction stream with up to 4 instructions per 

cycle, which would fit applications with a significant amount of 

instruction-level parallelism (ILP). Finally, to achieve highest 

possible performance (up to 10 operations per cycle) in streaming 

mode, each unit of the data-path and each port of each register file 

(Figure 1e) would be controlled explicitly by a very wide 256-bit 

instruction, similar to the Stanford Imagine processor [21]. The 

data-path (Figure 1e) was designed to support all three modes of 

operations by changing the routing of operation operands and 

results. 

At this point we realized that we had been focusing on the smaller 

part of the problem.  While this architecture had a number of 

interesting features, and the hardware was modular and seemed 

like it would not be too difficult to implement on a test-chip, it 

became clear that the effort required to develop the corresponding 

software infrastructure was too high. The three processor modes 

required development of three different software development 

environments.  Each had a different instruction set (ISA) and 

computational model, so each mode would require its own 

compiler and support tools such as assemblers, linkers, debuggers, 

runtimes and IO libraries. In addition, the design of a processor 

with different custom instruction sets would require three sets of 

ISA verification tests as well as development or tuning of 

software benchmarks. This was impossible for a small team at a 

university. 

With this heightened awareness of the costs of the software 

environment and testing, we needed to find a feasible solution.  A 

conventional CPU would not support novel memory operations, 

thus the need for some degree of customization.  At the minimum, 

it appeared that we would need at least a few special processor 

features, including (1) different flavors of memory operations and 

(2) the ability to recover from speculative operations.  Because 

Tensilica presented a solution that supports custom features yet 

does not require ground-up hardware and software design [14], we 

decided to try and integrate it into our system. 

Using Tensilica reduced the amount of required software work 

substantially and allowed us to focus on the design of a 

reconfigurable memory system [12]. Obviously, it also 

constrained the Smart Memories architecture and potentially 

limited its performance.  This was a small price to pay to 

complete the design with a reasonable amount of effort and to 

have a high-quality optimizing compiler and other software tools. 

4. TENSILICA OVERVIEW 
Tensilica’s Xtensa Processor Generator automatically generates a 

synthesizable hardware description for the user customized 

processor configuration [14][25]. The base Xtensa architecture is 

a 32-bit RISC instruction set architecture (ISA) with 24-bit 

instructions and a windowed general-purpose register file. 

Register windows have 16 register each, and the total number of 
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Figure 1. Smart Memories Architecture: a) chip floorplan; b) tile block diagram; c) reconfigurable memory block diagram;  

d) reconfigurable processor; e) shared processor data-path 



physical registers is 32 or 641. Users can select pre-defined 

options such as a floating-point co-processor (FPU) and can 

define custom instruction set extensions using the Tensilica 

Instruction Extension language (TIE) [49]. The TIE compiler 

generates a customized processor, taking care of low-level 

implementation details such as pipeline interlocks, operand bypass 

logic, and instruction decoding. In addition, the Tensilica system 

generates a complete verification environment for the processor, 

including a standalone testbench with processor state monitors 

and more than 400 diagnostic test programs for the ISA and all 

processor features. 

Using the TIE language, designers can add registers, register files, 

and new instructions to improve performance of the most critical 

parts of the application. Multiple operation instruction formats can 

be defined using the Flexible Length Instruction eXtension 

(FLIX) feature to further improve performance [19]. Another 

feature of the TIE language is the ability to add user-defined 

processor interfaces such as simple input or output wires, queues 

with buffers, and lookup device ports. These interfaces can be 

used to interconnect multiple processors or to connect a processor 

to other hardware units. The base Xtensa pipeline is either five or 

seven stages and has a user selectable memory access latency of 

one or two cycles. A two-cycle memory latency allows designers 

to achieve faster clock cycles or to relax timing constraints on 

memories and wires. 

Tensilica provides many options for memory and external device 

interfaces (Figure 2): instruction and data caches, instruction and 

data RAMs and ROMs, shared memories, queues and FIFOs. 

For Smart Memories we used many pre-defined Tensilica options: 

32-bit integer multiplier and divider, 32-bit floating point unit, 64-

bit floating point accelerator, seven stage pipeline with 2-cycle 

memory access and 4 scratch registers used for the runtime. 

Furthermore, we added several FLIX instruction formats that can 

execute up to 3 instructions per cycle. We also used several 

features that help with software debugging: the On-Chip Debug 

(OCD) option enables a GDB debugger running on a host PC to 

connect to the Tensilica processor via the JTAG interface, and an 

                                                                    

1Later, 16-register option without windows also became available.  

instruction trace port option, which can record an instruction trace 

to local memory. 

We used Tensilica tools extensively throughout the Smart 

Memories project. First, we developed an architectural simulator 

using a generated processor model and Tensilica’s Xtensa 

Modeling Protocol (XTMP) to interface to the memory system 

model [47]. Then, we used the Tensilica Processor Generator to 

produce synthesizable processor RTL, a processor standalone 

testbench, and a set of diagnostic test programs for the processor. 

This greatly reduced the amount of design and verification work.  

During the project we found an additional advantage of using IP 

that someone else was developing – it got better with time.  When 

we started the project, the FLIX capability was not released, and 

the simulation system did not have a very fast, direct execution 

mode.  Both were developed during the project and used in our 

design.  Eventually Tensilica even added coherent cache support, 

but it was too late to use in our design. 

5. SMART MEMORIES, VERSION II 
Although using third-party IP blocks such as Tensilica processors 

is a very attractive idea for both industrial system-on-chip (SOC) 

designs and computer architecture research prototypes, in practice 

IP blocks such as processors are often challenging to use [37]. 

This section discusses the challenges and the solutions for 

interfacing a Tensilica processor to the rest of the Smart 

Memories design. To understand the minimum properties required 

from the processing core, we first turn to review some of the 

details of the memory system of Smart Memories. 

When the project was restarted using Tensilica cores, the basic 

memory system design remained relatively unchanged. As shown 

in Figure 3, all on-chip memories consist of runtime-configurable 

memory mats. In each tile, the memory mats are interconnected 

through an Inter-Mat Communication Network (IMCN) (Figure 

3b)—a fast path for exchanging memory control and state 

information to implement composite storage structures such as 

instruction and data caches (Figure 3c). In this example, the mats 

combine to form a two-way cache: mats 6 and 11 are used as tag 

storage while mats 7-10 and 12-15 store the data. The memory 

configuration consists of two parts.  The first is configuration state 

that is located throughout the memory system. This state 

determines the function of each mat and various routing 
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connections, e.g. which mats contain tags and which mats contain 

data, whether the result of IMCN messages should affect the 

outcome of a given operation, etc. Since we want a single 

application to have access to a number of different types of 

memory operations, we also associate an opcode with each 

memory access.  These opcodes are the second part of the 

memory configuration.  They select which configuration bits are 

associated with the memory operation, how the metadata bits 

should be updated, and how the metadata and IMCN results 

should affect the memory access.  This allows us to use the 

metadata bits associated with the data to implement full/empty 

bits and provide different types of load and store instructions to 

implement memory operations that support per-word 

synchronization, as well as track the coherence state of the cache 

lines and implement an LRU policy for the tag mats. In a 

transactional memory mode, opcodes are used to indicate 

speculative read and write operations which update metadata bits 

to indicate the transaction’s read and write sets. 

Having head/tail pointers associated with each of the memory 

mats makes it easy to efficiently implement hardware FIFOs. 

These are sometimes used to augment cache structures, e.g. to 

store the addresses of a transaction’s write set, to be used later at 

commit time [16]. In streaming mode, the memory mats are 

aggregated into addressable scratchpads. FIFOs are also important 

for streams since they can be used to capture producer-consumer 

locality between processors.  

While there is great flexibility in the memory system and 

associated protocol controller, the processor’s task is quite simple. 

It needs to the ablility to generate load/store instructions with 

different opcodes—to send semantically different operations to 

the memory system—and the ability to tolerate occasional delays 

in getting the requested data back. With different ―colored‖ 

memory access types, we can interpret these opcodes as FIFO 

load/store operations, synchronized load/store operations, gang 

operations (e.g., invalidating a transaction read/write set) or even 

simple metadata write/compare/read operations as needed for a 

given memory model. For the Smart Memories architecture, 

switching to a Tensilica processor solution would be feasible if it 

could support different types of memory operations and the 

special architectural semantics that they imply, and be able to 

recover from speculative execution that needed to be nullified. 

There were two main issues that we needed to resolve to use the 

Tensilica processors in our architecture.  The first was how to 

connect it to our coherent memory system, and the second was 

how to make the processor recover from mis-speculation. 

5.1 Interfacing the Tensilica Processor to 

Smart Memories 
Although Tensilica provides many options for memory interfaces 

(Figure 2), none of these interfaces can be used directly to connect 

the Tensilica processor to the rest of the Smart Memories system. 

The Xtensa processor has interfaces to implement instruction and 

data caches, but these interfaces do not support coherence 

operations, and thus could not be used for the multiprocessor 

Smart Memories architecture. The Xtensa cache interfaces 

connect directly to SRAM arrays for cache tags and data, and the 

cache management logic is fixed. As a result, it is impossible to 

modify the functionality of the Xtensa caches or to re-use the 

same SRAM arrays for different memory structures like local 

scratchpads. 

To make the problem even more difficult, in addition to simple 

load and store instructions, the Smart Memories architecture must 

support several other memory operations that utilize the extra 

metadata bits.  While these memory operations can easily be 

added to the instruction set of the processor using the TIE 

Figure 3. Tile memory organization: a) bock diagram of the memory mat; b) tile crossbar and IMCN; c) example cache 

configuration 



language it is impossible to extend Xtensa interfaces to natively 

support such instructions. 

To resolve these issues, we decided to use instruction and data 

RAM interfaces as shown in Figure 4a, instead of cache 

interfaces. Rather than connecting these interfaces directly to the 

memory arrays, we route all instruction fetches, loads and stores 

to the tile interface logic (Load Store Unit), which converts them 

into actual control signals for memory blocks used in the current 

configuration. Special memory operations are sent to the interface 

logic through the TIE lookup port, which has the same latency as 

the memory interfaces. If the data for a processor access is ready 

in 2 cycles, the interface logic sends it to the appropriate processor 

pins. If the reply data is not ready (e.g. due to cache miss, 

arbitration conflict in tile crossbar or remote memory access), the 

interface logic stalls the processor clock until the data is ready. 

The advantage of this approach is that the instruction and data 

RAM interfaces are very simple: they consist of enable, write 

enable/byte enables, address and write data outputs and return 

data input. The meaning of the TIE port pins is defined by 

instruction semantics described in TIE. Processor logic on the 

critical path is minimal. The interface logic is free to perform any 

transformations with the virtual address supplied by the processor. 

Moreover, the semantic interpretation of the TIE port accesses is 

determined independently and can even be runtime configurable. 

Adding special memory instructions to the architecture does add 

one complication. Special load instructions can modify metadata 

bits, i.e. they can alter the architectural state of the memory. 

Standard load instructions do not have side effects, i.e. they do not 

alter the architectural state of the memory system, and therefore 

they can be executed by the processor as many times as necessary. 

Loads might be reissued, for example, because of processor 

exceptions as shown in Figure 4b: loads are issued to the memory 

system at the end of the E stage, load data is returned to the 

processor at the end of the M2 stage, while the processor commit 

point is in the W stage, i.e. all processor exceptions are resolved 

only in the W stage. Such resolution may ultimately result in re-

execution of the load instruction. Stores, by contrast, are issued 

only in the W stage after the commit point. 

Therefore, because it would be very difficult to undo any side 

effects of special memory operations, they are also issued after the 

commit point in W stage, and the processor pipeline was extended 

by 2 stages (U1 and U2 in Figure 4b) to have the same 2-cycle 

latency for special load instructions. 

However, having different issue stages for different memory 

operations creates the memory ordering problem illustrated in 

Figure 5a. A load following a special load in the application code 

is seen by the memory system before the special load because it is 

issued in the E stage. To prevent such re-ordering, we added 

pipeline interlocks between special memory operations and 

ordinary loads and stores. An example of such an interlock is 

shown in Figure 5b. The load is stalled in the D stage for 4 cycles 

to make sure the memory system sees it 1 cycle after the previous 

special load. One extra empty cycle is added between 2 

consecutive operations to simplify memory system logic for the 

case of synchronization stalls. This does not degrade performance 

significantly because such combinations of a special load 

followed by a standard load are rare. 

This addition of such an interlock alters the semantics of the core 

ISA of the Tensilica processor and is outside of the allowed range 

of user customizations. Yet we would not be able to implement 

our programmable memory system without it.  Fortunately, we 

were able to work closely with Tensilica’s engineering team to 

enable this change and get workarounds for the compiler issues 

that this change caused.  

Another issue related to the interface between the Tensilica 

processor and the memory system is timing. Processor designers 

usually avoid stalling the processor clock on cache miss because it 
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will always create a critical path.  The clock gate signal is needed 

very early to compensate for the clock tree delay to avoid 

glitching the clock.  Instead modern machines disable state 

updates for squashed instructions, i.e. the write-back stage of the 

instruction that caused the cache miss. Unfortunately for us, the 

processor is a black box—we cannot change its internal operation 

(except by adding features using TIE).  Since we were converting 

an SRAM interface into a cache interface, the only way to handle 

cache misses was to stall the processor clock. We stall the 

processor clock in the case of cache miss, crossbar arbitration 

failure or off-tile memory mat access (Figure 6).  While this is a 

clean functional solution, it does create a tight timing path.  

The tile timing is therefore determined by very tight timing 

constraints on the processor clock signal as shown in Figure 6. 

The forward path for the memory operation data issued by the 

processor goes through the flop in the interface logic and then 

through the flop in the memory mat. In the reverse path, the 

output of the memory mat goes to the stall logic and determines 

whether the processor clock should be stalled or not. To avoid 

glitches on the processor clock, the output of the stall logic must 

go through a flop or latch clocked with an inverted clock. The 

whole reverse path including memory mat, crossbar and stall logic 

delays must fit in a half clock cycle. This half cycle path is the 

most critical in the design and determines the clock cycle time. To 

relax timing constraints, the processor is clocked with an inverted 

clock: the delay of the reverse path must fit within the whole 

clock cycle, rather than just the half cycle. This shift does shorten 

the time for the E stage to generate the results, but since the 

processor does not limit the clock of this system, this path is fast 

enough. 
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5.2 Using a Register Windows Mechanism for 

Processor State Check-pointing 
We leverage another feature of the Tensilica architecture to aid 

implementation of modes that support speculative execution. To 

checkpoint processor state at the beginning of speculative 

execution, previously proposed thread-level speculation (TLS) 

architectures modify the register renaming mechanism in out-of-

order execution processors [9][43] or utilize a shadow register file 

[15]. It is possible to accomplish the needed checkpoint with little 

overhead and almost no hardware support (no shadow registers) in 

a machine with register windows such as Tensilica. In order to 

explain the proposed approach, let’s consider an example of a 

windowed register file that consists of 64 physical registers, 

divided into groups of four, with a 16-register window being 

visible at any time. Figure 7a shows the two registers that control 

the window mechanism. Window Start has one bit per group of 

four registers, and indicates where a register window starts. 

Window Base is a pointer to the beginning of the current window 

in Window Start. 

On each function call, as directed by the compiler, the register 

window shifts by 4, 8 or 12 registers (Figure 7b). Register 

window overflow occurs when, after shifting, Window Start has 1 

within the current window (Figure 7c). In this case, an exception 

handler is invoked to spill the registers over to the memory. 

When the processor runs a speculative thread, register values can 

fall into one of the following categories: 

 constants, which are passed to the speculative thread and are 

not changed during execution;  

 shared variables, which are modified by other threads and must 

be read from memory before they are used for computation;  

 temporary values, which are alive only during the execution of 

this thread; 

 privatized variables, such as loop induction variable or 

reduction variables. 

The first three categories do not need to be saved at the start of a 

speculative thread, since they are not changed at all or are 

reloaded or recalculated. To simplify the violation recovery 

process, we have forced privatized variables to go through 

memory as well: the values are loaded at the start of the 

speculation and are saved back to memory at the end. Software 

overhead is typically quite small because speculative threads 

usually have few privatized variables. 

If a speculative thread does not contain any function calls, the 

register window will not move during the execution of the 

speculative thread. As discussed, since the registers in the active 

window do not change, the recovery process after mis-speculation 

is very rapid because no restoration of the register values is 

required. However, if there is a function call in the speculative 

loop body, the register window will be shifted by the function 

call. If a violation is detected while the thread is in the middle of 

the function call, the state of the register window must be 

recovered correctly. For this purpose, two instructions and a 

special register are added to the processor for saving and restoring 

Window Start and Window Base values atomically. In order to 

keep the recovery operation simple and fast, the exception handler 

for the window overflow is also modified to avoid spilling the 

registers when the execution is speculative. This way, it is not 

necessary to read back the spilled values into the register file in 

the case of violation; the window exception handler is simply 

stalled until the thread becomes non-speculative and can commit 

its changes to the memory system. 

In comparison with a shadow register file approach, our technique 

requires little extra hardware: a special register to save values of 

Window Start and Window Base, and two new instructions. In 

comparison with a purely software approach (which takes tens to 

a hundred cycles), our technique is significantly faster: it requires 

one instruction to save Window Start and Window Base and only 

a few store instructions for privatized variables, since a typical 

speculative thread rarely has more than two privatized variables. It 

should be noted that this checkpointing technique is not applicable 

to non-windowed architectures such as MIPS, because function 

calls may overwrite any register regardless of how it was used in 

the caller function. 

5.3 Software and Benchmarking Issues 
In theory developing a custom processing core that exactly fits the 

architectural requirement of the system will provide better 

performance and better power efficiency than reusing an off-the-

shelf core. However, in practice the better software development 

infrastructure that accompanies an existing core can easily allow 

the programmer to achieve higher application performance. The 
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overall system performance is as dependent on the software tools 

quality (compiler, linker, etc) as it is on the hardware. 

The availability of a high-quality optimizing Tensilica compiler 

makes benchmarking of the architecture simpler and more 

credible. We did not have to resort to hand-coding of 

microbenchmarks [13], instead we could concentrate on 

performance evaluation using applications such as SPLASH-2 

[50], and the TCC version of SPLASH-2 benchmarks [31].  Not 

surprisingly the level of compiler optimizations affected 

benchmark performance and the way performance scaled with 

number of processors. 

Figure 8 shows speedups versus the number of processors for two 

versions of the same barnes application. One of them is the 

original code from the SPLASH-2 suite designed for shared 

memory cache-coherent architectures (designated as CC), the 

other is a version of the same application converted for a 

transactional memory architecture, TCC [31]. Figure 8a shows 

performance scaling for un-optimized executables, compiled with 

option –O0, and normalized to a shared memory version running 

on a single processor. Similarly, Figure 8b shows performance 

scaling for executables compiled with option –O1. Finally, Figure 

8c shows performance scaling for executables with highest level 

of optimization, compiled with options –O3 and –ipa (ipa stands 

for inter-procedural analysis). 

The version compiled with the highest level of optimization is 

approximately 4 times faster than the un-optimized version, and 

2.5 times faster than the version compiled with option –O1. Also, 

at the highest level of optimization performance, the scaling of the 

TCC version is noticeably worse: on a 16-processor configuration 

it is 1.62x slower than the shared memory version, while in the 

case of un-optimized code (Figure 8a) it is only 1.35x slower than 

the shared memory version. Of course, these results are dependent 

on the cache configuration and details of our implementation of 

TCC, which uses software in the runtime to implement part of the 

protocol [41]. In fact most of this overhead comes from executing 

extra instructions during transaction commit. This overhead is less 

than 10% on a single processor configuration for all cases (Figure 

8). 

We spent significant effort trying to optimize and tune the 

performance of the TCC version of barnes. Figure 9 shows 

performance scaling of the tuned version of barnes (TCC) versus 

the original version from [31] (designated as TCC frequent 

commits). In simulating this application, it became clear that the 

original TCC version did not scale well in the most optimized 

case (Figure 9c) because of the large number of commits inside 
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recursive function calls of the main computation loop. Elimination 

of these frequent unnecessary commits improved performance by 

approximately 3x. 

Similarly, when we tried to compare streaming and shared 

memory architectures using the Smart Memories infrastructure 

[27] we found that the result of comparison is highly dependent 

on the software optimizations of the benchmarks. In fact, many 

streaming optimizations can be applied to a shared memory 

version of the same benchmark with significant improvements in 

performance and energy dissipation. Figure 10 shows normalized 

execution time and off-chip memory traffic for a parallelized 

version of 179.art benchmark from the SPEC2000 suite. ORIG is 

the original version; OPT1, OPT2 and OPT3 are successively 

more optimized versions of the same applications (a detailed 

description of the optimizations can be found in [27][41]). While 

the original shared memory version of 179.art is significantly 

slower than streaming, the most optimized shared memory version 

has approximately the same performance. Enabling this type of 

software tuning completely changed the conclusion about the 

importance of creating a streaming memory system. 

5.4 Status and Lessons Learned 
Clearly, no matter how much effort Tensilica or any other vendor 

put in to it, no off-the-shelf processing core would ever hold the 

exact features required for a new architecture. However, with the 

current generation of extensible processors we can come very 

close to that goal.  With the ability to add new instructions and 

ports (using TIE and TIE ports in the Tensilica system) and being 

willing to accept practical solutions with a few workarounds, new 

architectures can be realized and can significantly benefit from 

software tooling reuse. Especially important are compiler 

optimizations, as those enable true comparisons of the new 

architecture to well established ones. 

Leveraging Tensilica cores and software stack we implemented an 

extensible multi-processor architecture. Both the system simulator 

and the RTL design were tested to run with up to 32 active 

processors (four quads). Eventually, the architecture was validated 

against three specific models: cache-coherent shared memory [1], 

streaming [45] [21] and TCC [16]. 

An 8-core (one quad) test chip was fabricated using ST 

Microelectronics 90 nm technology. It contains four tiles, each 

with two Tensilica processors, and a shared protocol controller. 

The total chip area is 60.5 mm2 and contains 55 million 

transistors. The chip successfully passed extensive testing, starting 

from JTAG configuration, on-chip memory read-write tests, and 

running scaled-up application programs in the three target modes 

of operation.  We are currently working on bringing up 32-

processor system with 4 Smart Memories test chips. 

6. CONCLUSIONS 
A pre-existing extensible processor system, such as that provided 

by Tensilica, can turn an otherwise unmanageable, overly-

ambitious architecture project into a feasible effort successfully 

completed despite severely limited manpower resources. 

For instance, building a successful computing system at a 

university has always been a difficult task.  The most successful 

projects manage the amount of work required by focusing their 

effort on a few core research issues, and try to leverage existing 

tools and techniques from others for the remaining non-core 

issues.  This issue of focus has become especially acute in 

building new processor systems, where the level of software 

infrastructure that is needed to create a useable platform is quite 

large.  It is for this reason that much of the work on 

multiprocessors has used existing ISAs and even processor 

boards, and why so many new architecture demonstrations are 

based on the open source SPARC designs.  Of course, the 

downside of using an established ISA/architecture is that the new 

ideas become more difficult to realize. 

When working on the reconfigurable Smart Memories project, we 

used an extensible processor system that could produce a 

customized processor and necessary software tools. While this 

decision constrained many aspects of the overall system, it 

allowed us to focus on the design of the reconfigurable memory 

system and to successfully design and fabricate a test chip with a 

production quality software environment. The strong software 

tools made it easier to run more applications, but this just drove 

home the point that the evaluation of new architecture is tricky.  

Since the interaction between application sharing patterns and the 

Figure 10. The effect of stream programming optimizations on the shared memory 179.art’s performance and off-chip traffic [27] 



underlying hardware capabilities can be surprising, it requires a 

significant amount of work on application optimization and tuning 

to get meaningful results. 

Our current work continues to explore the potential of extensible 

processors. We have found that Smart Memories can provide the 

basis for evaluating a number of architectural ideas, since both 

processor and memory system are highly flexible.  This has led to 

our current research in building a CMP generator [42]. The idea is 

to use the reconfigurable Smart Memories architecture as a virtual 

prototyping platform that lets an application designer configure 

memory operations, protocols, and the underlying processor 

instructions, to tune the machine for a specific application or 

application class, while still maintaining a high-quality software 

development environment. Preliminary results indicate that this 

approach could create computing solutions that are orders of 

magnitude more energy efficient than conventional approaches. 
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