
Using a Configurable Processor Generator for Computer
Architecture Prototyping

Alex Solomatnikov*, Amin Firoozshahian*

Hicamp Systems, Inc.

{solomatnikov, aminf13}@gmail.com

Ofer Shacham, Zain Asgar, Megan Wachs,
Wajahat Qadeer, Stephen Richardson,

Mark Horowitz
Stanford University

{shacham, zasgar, wachs, wqadeer, steveri,
horowitz}@stanford.edu

ABSTRACT

Building hardware prototypes for computer architecture research

is challenging. Unfortunately, development of the required

software tools (compilers, debuggers, runtime) is even more

challenging, which means these systems rarely run real

applications. To overcome this issue, when developing our

prototype platform, we used the Tensilica processor generator to

produce a customized processor and corresponding software tools

and libraries. While this base processor was very different from

the streamlined custom processor we initially imagined, it allowed

us to focus on our main objective—the design of a reconfigurable

CMP memory system—and to successfully tape out an 8-core

CMP chip with only a small group of designers. One person was

able to handle processor configuration and hardware generation,

support of a complete software tool chain, as well as developing

the custom runtime software to support two different

programming models. Having a sophisticated software tool chain

not only allowed us to run more applications on our machine, it

once again pointed out the need to use optimized code to get an

accurate evaluation of architectural features.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream

Architectures (Multiprocessors) – Parallel Processors; C.4

[Performance of Systems]: Design studies; C.1.2 [Computer

System Implementation]: VLSI Systems

General Terms

Performance, Design, Experimentation

Keywords

Reconfigurable architecture, configurable/extensible processor

generator, memory system architecture, computer architecture

prototyping, VLSI design

1. INTRODUCTION AND MOTIVATION
Our expectations of the capability of software development

environments continue to grow with time. Compilers, runtime

environments, debuggers and performance analysis tools are

critical for creating high-performance applications. As Kunz

showed in [23], eliminating the small accidental sharing that

happens in most parallel applications can have a much larger

effect on application performance than most architectural

techniques—removing sharing is always better than trying to

make sharing more efficient. This fact is a challenge for

researchers working on innovative architectures. Detection and

debugging of false sharing and other software issues requires a

strong set of software tools that are hard and time consuming to

develop. Indeed, all computer architecture projects face a

dilemma: any architecture that is ambitious and truly novel by

definition requires enormous software development effort to make

it useable; on the other hand, architectures that can mostly reuse

existing software tools are often incremental in nature. As result,

many research projects that try to explore novel architectural ideas

end up spending significant effort on software: RAW [46],

Imagine [3][21], TRIPS [13] and TCC [16] are all recent

examples. However, even very significant software effort does not

guarantee that the performance of the generated software is good

enough to show the advantages of a new architecture, and as a

result researchers often resort to hand-optimization of benchmarks

[13].

We recently completed an implementation of the Smart Memories

CMP, which faced similar challenges [38]. The goal of the Smart

Memories project was to design a reconfigurable architecture that

could support a wide variety of memory models. To test its

flexibility we implemented conventional cache-coherent shared

memory [1], streaming [3][21] and transactions [16][17]. Initially

we planned to have reconfigurability in both the processor and the

memory system. After working on this path for a while, we

realized that the development of a new machine and instruction

set architecture along with the associated software stack was

going to be much too large a task for the small group of students

involved with the project. Instead we decided to concentrate on

memory system architecture and took the unusual path of trying to

leverage the Tensilica system and its associated software tools

[14] for the processor portion of our research architecture

implementation. This approach let us focus on the core feature of

the project—reconfigurable memory system—and to successfully

complete the test chip design, with minimal effort (one person)

devoted to the configuration and generation of the processor

hardware and software tools. While the use of Tensilica limited

our flexibility, it provided a strong software development

environment and greatly increased confidence in our architectural

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright © 2009 ACM 978-1-60558-798-1/09/12…$10.00.

This work was done while the authors were at Stanford

University

performance evaluation.

However, adapting the Tensilica processor to our architecture was

challenging. As we describe later in the paper there were many

issues to resolve, but the biggest disconnect was the fact that at

the time we started, Tensilica did not have a method of building a

coherent memory system, and we wanted our memory system to

support sophisticated memory operations that required coherence.

Fortunately, the extensibility of the Tensilica platform allowed us

to implement the range of memory operations that we needed, and

the accompanying software system allowed us to create a number

of applications to evaluate our new hardware features.

This paper reviews the history of Smart Memories development,

the decisions made during this process and the lessons learned, as

well as the current status and results. We feel this story makes a

compelling case for using extensible processors in future

architecture research. To understand the advantages of this

approach, the next section reviews how other large computing

systems research projects have addressed the software

development question. With this background, Section 3 then

briefly talks about the history of the Smart Memories project and

reviews the key architectural features needed to support our

flexible memory system. We faced several challenges when we

switched to a Tensilica processor, so Section 4 first provides an

overview of the Tensilica environment, and then Section 5

describes how we connected the processor to the flexible memory

system, and how we used register windows to quickly restore

shadow state. Section 5 also discusses how using an optimizing

software pipeline changed some of our performance results. Our

concluding remarks are presented in Section 6.

2. RELATED WORK
From MIPS to TRIPS, many architectural research projects

developed custom instruction set architectures that required not

only the development of new compilers but new compiler

technologies. Early RISC projects at Berkeley and Stanford

developed the ISA in parallel with compiler and operating system

work. These efforts led to many advanced compiler techniques

including instruction scheduling and register allocation [8][36].

VLIW architectures further pushed instruction scheduling and

relied heavily on optimizing compilers to achieve high

performance [11][18][22][28][39]. Similarly, dataflow

architectures required sophisticated software systems [4][44]. The

TRIPS project is the latest project in this vein, which designed the

EDGE architecture along with the superblock scheduling compiler

that it required [40].

Some of the most innovative machines from an architectural

standpoint require more than just a custom compiler, since they

are based on a different programming model. Some examples

include systolic computing by CMU’s iWarp [7], message driven

computing by MIT’s J-Machine [35], stream processing by MIT

Raw [46] and Stanford’s Imagine [21]. Other projects have

adopted existing instruction set architectures (ISA) while

exploring multi-processor architectures. For example, Stanford

DASH and FLASH used commercial off-the-shelf MIPS

processors and designed multi-processor memory systems

connected to the processor via a standard processor bus [26][24].

Other projects that used existing ISA or processor designs are

Raksha [20] and Wisconsin Wind Tunnel [34].

An alternative approach is to use an existing processor

architecture, but modify or add some instructions to let it access

new architectural features. An early example is the Sparcle

processor, which was developed and used for the MIT Alewife

project [2]. Recently there have been a number of companies that

have created extensible microprocessor IP, including Tensilica

[14] [49][19], MIPS, and ARM. Other companies have created

systems that generate processors and software systems from a

high level ISA description. These solutions have the potential to

provide the advantages of a high-quality software environment

while preserving the ability to modify the processor architecture.

Given the small design team in the Smart Memories project, we

decided that this was the only feasible way to accomplish our

goals. While this approach is not perfect, as the rest of the paper

shows, it has significant advantages. The following sections

describe our experience in the Smart Memory project using this

approach.

3. SMART MEMORIES, VERSION I
Recently, with the shift towards multi-core chips, computer

architecture research has focused on parallel architectures, as well

as the programming models and software systems necessary to

facilitate the wide adoption of such architectures. The goal of the

Smart Memories project was to design a universal programming

platform that can support three popular programming models that

were explored by other researchers. One of these is the

conventional cache-coherent shared memory model [1]. Another

is the stream programming model implemented by the MIT RAW

and Stanford Imagine [45][46][3][21]. These projects developed

streaming languages [48], associated software tool chains and

even application benchmarks written using the stream

programming model. Transactional memory was another memory

model that we wanted to support [17][16]. The transactional

memory programming model was proposed to simplify

parallelization of software using a hardware transactional

mechanism, which builds upon work on thread-level speculation

(TLS) [15]. This work involves designing an application

programming interface (API) for transactional memory hardware

and runtime system [32][5] and developing application

benchmarks that can be used to evaluate transactional memory

architectures [33]. Initially, the architecture was designed to

support TLS. Later in the implementation process we decided

instead to complete the implementation of a more general

transactional memory model, transactional coherence and

consistency (TCC) [16].

To provide functional flexibility, Smart Memories consists of a

hierarchical reconfigurable architecture. The basic building

blocks include a reconfigurable memory system, plus interconnect

and processing elements [29]. The chip is divided into tiles, and

four adjacent tiles are grouped into quads (Figure 1a). Quads

communicate with each other and with off-chip interfaces via a

dynamically routed global on-chip network. Tiles inside the quad

share the network port and protocol controller. Each tile (Figure

1b) contains 16 memory blocks, which are connected to the

processor through a crossbar. Each memory block (Figure 1c) is

also reconfigurable [30].

In addition to an SRAM data array, memory blocks also have a

dual-ported metadata array that stores control state associated with

the data and some programmable logic that enables a set of

customizable atomic read-modify-write operations for this control

state. Each memory block also contains a comparator, so it can be

used as tag memory, and FIFO pointers. Using these features and

a flexible crossbar interconnect, a set of memory blocks in the tile

can be configured to function as set-associative caches, directly

addressable local memories (scratchpads) or as hardware FIFOs.

The quad protocol controller performs all actions required for data

movement functionality such as cache line refills, streaming

DMAs or transaction ordering. It is also reconfigurable to support

different modes of operation of the memory system such as cache

coherence or thread-level speculation.

In its original version, the processor (Figure 1d) was also designed

to be configurable, with three modes of operation. In multi-

threaded mode the processor behaves as 2 processors, each

running independent threads of instructions, and each thread

executing up to 2 instructions per cycle. Multi-threaded mode

would be a good match for applications with abundant thread-

level parallelism (TLP). In VLIW mode the processor would

execute a single instruction stream with up to 4 instructions per

cycle, which would fit applications with a significant amount of

instruction-level parallelism (ILP). Finally, to achieve highest

possible performance (up to 10 operations per cycle) in streaming

mode, each unit of the data-path and each port of each register file

(Figure 1e) would be controlled explicitly by a very wide 256-bit

instruction, similar to the Stanford Imagine processor [21]. The

data-path (Figure 1e) was designed to support all three modes of

operations by changing the routing of operation operands and

results.

At this point we realized that we had been focusing on the smaller

part of the problem. While this architecture had a number of

interesting features, and the hardware was modular and seemed

like it would not be too difficult to implement on a test-chip, it

became clear that the effort required to develop the corresponding

software infrastructure was too high. The three processor modes

required development of three different software development

environments. Each had a different instruction set (ISA) and

computational model, so each mode would require its own

compiler and support tools such as assemblers, linkers, debuggers,

runtimes and IO libraries. In addition, the design of a processor

with different custom instruction sets would require three sets of

ISA verification tests as well as development or tuning of

software benchmarks. This was impossible for a small team at a

university.

With this heightened awareness of the costs of the software

environment and testing, we needed to find a feasible solution. A

conventional CPU would not support novel memory operations,

thus the need for some degree of customization. At the minimum,

it appeared that we would need at least a few special processor

features, including (1) different flavors of memory operations and

(2) the ability to recover from speculative operations. Because

Tensilica presented a solution that supports custom features yet

does not require ground-up hardware and software design [14], we

decided to try and integrate it into our system.

Using Tensilica reduced the amount of required software work

substantially and allowed us to focus on the design of a

reconfigurable memory system [12]. Obviously, it also

constrained the Smart Memories architecture and potentially

limited its performance. This was a small price to pay to

complete the design with a reasonable amount of effort and to

have a high-quality optimizing compiler and other software tools.

4. TENSILICA OVERVIEW
Tensilica’s Xtensa Processor Generator automatically generates a

synthesizable hardware description for the user customized

processor configuration [14][25]. The base Xtensa architecture is

a 32-bit RISC instruction set architecture (ISA) with 24-bit

instructions and a windowed general-purpose register file.

Register windows have 16 register each, and the total number of

 a)

b) c)

d) e)

Figure 1. Smart Memories Architecture: a) chip floorplan; b) tile block diagram; c) reconfigurable memory block diagram;

d) reconfigurable processor; e) shared processor data-path

physical registers is 32 or 641. Users can select pre-defined

options such as a floating-point co-processor (FPU) and can

define custom instruction set extensions using the Tensilica

Instruction Extension language (TIE) [49]. The TIE compiler

generates a customized processor, taking care of low-level

implementation details such as pipeline interlocks, operand bypass

logic, and instruction decoding. In addition, the Tensilica system

generates a complete verification environment for the processor,

including a standalone testbench with processor state monitors

and more than 400 diagnostic test programs for the ISA and all

processor features.

Using the TIE language, designers can add registers, register files,

and new instructions to improve performance of the most critical

parts of the application. Multiple operation instruction formats can

be defined using the Flexible Length Instruction eXtension

(FLIX) feature to further improve performance [19]. Another

feature of the TIE language is the ability to add user-defined

processor interfaces such as simple input or output wires, queues

with buffers, and lookup device ports. These interfaces can be

used to interconnect multiple processors or to connect a processor

to other hardware units. The base Xtensa pipeline is either five or

seven stages and has a user selectable memory access latency of

one or two cycles. A two-cycle memory latency allows designers

to achieve faster clock cycles or to relax timing constraints on

memories and wires.

Tensilica provides many options for memory and external device

interfaces (Figure 2): instruction and data caches, instruction and

data RAMs and ROMs, shared memories, queues and FIFOs.

For Smart Memories we used many pre-defined Tensilica options:

32-bit integer multiplier and divider, 32-bit floating point unit, 64-

bit floating point accelerator, seven stage pipeline with 2-cycle

memory access and 4 scratch registers used for the runtime.

Furthermore, we added several FLIX instruction formats that can

execute up to 3 instructions per cycle. We also used several

features that help with software debugging: the On-Chip Debug

(OCD) option enables a GDB debugger running on a host PC to

connect to the Tensilica processor via the JTAG interface, and an

1Later, 16-register option without windows also became available.

instruction trace port option, which can record an instruction trace

to local memory.

We used Tensilica tools extensively throughout the Smart

Memories project. First, we developed an architectural simulator

using a generated processor model and Tensilica’s Xtensa

Modeling Protocol (XTMP) to interface to the memory system

model [47]. Then, we used the Tensilica Processor Generator to

produce synthesizable processor RTL, a processor standalone

testbench, and a set of diagnostic test programs for the processor.

This greatly reduced the amount of design and verification work.

During the project we found an additional advantage of using IP

that someone else was developing – it got better with time. When

we started the project, the FLIX capability was not released, and

the simulation system did not have a very fast, direct execution

mode. Both were developed during the project and used in our

design. Eventually Tensilica even added coherent cache support,

but it was too late to use in our design.

5. SMART MEMORIES, VERSION II
Although using third-party IP blocks such as Tensilica processors

is a very attractive idea for both industrial system-on-chip (SOC)

designs and computer architecture research prototypes, in practice

IP blocks such as processors are often challenging to use [37].

This section discusses the challenges and the solutions for

interfacing a Tensilica processor to the rest of the Smart

Memories design. To understand the minimum properties required

from the processing core, we first turn to review some of the

details of the memory system of Smart Memories.

When the project was restarted using Tensilica cores, the basic

memory system design remained relatively unchanged. As shown

in Figure 3, all on-chip memories consist of runtime-configurable

memory mats. In each tile, the memory mats are interconnected

through an Inter-Mat Communication Network (IMCN) (Figure

3b)—a fast path for exchanging memory control and state

information to implement composite storage structures such as

instruction and data caches (Figure 3c). In this example, the mats

combine to form a two-way cache: mats 6 and 11 are used as tag

storage while mats 7-10 and 12-15 store the data. The memory

configuration consists of two parts. The first is configuration state

that is located throughout the memory system. This state

determines the function of each mat and various routing

Xtensa

Instruction
Cache

Instruction
RAM

Instruction
ROM

Data
Cache

Data
RAM

Data
ROM

PI
F

XLMI

Shared Peripherals
Shared FIFOs

Off-Chip Bus
Interface

Processor
Processor

Processor
Peripheral

Peripheral
Peripheral

Memory
Memory

Memory

On-Chip Bus
Lookup
Device

TIE Lookup

TIE Queue

Queue

TIE Port Device

Interrupts

Figure 2. Tensilica Processor Interfaces

connections, e.g. which mats contain tags and which mats contain

data, whether the result of IMCN messages should affect the

outcome of a given operation, etc. Since we want a single

application to have access to a number of different types of

memory operations, we also associate an opcode with each

memory access. These opcodes are the second part of the

memory configuration. They select which configuration bits are

associated with the memory operation, how the metadata bits

should be updated, and how the metadata and IMCN results

should affect the memory access. This allows us to use the

metadata bits associated with the data to implement full/empty

bits and provide different types of load and store instructions to

implement memory operations that support per-word

synchronization, as well as track the coherence state of the cache

lines and implement an LRU policy for the tag mats. In a

transactional memory mode, opcodes are used to indicate

speculative read and write operations which update metadata bits

to indicate the transaction’s read and write sets.

Having head/tail pointers associated with each of the memory

mats makes it easy to efficiently implement hardware FIFOs.

These are sometimes used to augment cache structures, e.g. to

store the addresses of a transaction’s write set, to be used later at

commit time [16]. In streaming mode, the memory mats are

aggregated into addressable scratchpads. FIFOs are also important

for streams since they can be used to capture producer-consumer

locality between processors.

While there is great flexibility in the memory system and

associated protocol controller, the processor’s task is quite simple.

It needs to the ablility to generate load/store instructions with

different opcodes—to send semantically different operations to

the memory system—and the ability to tolerate occasional delays

in getting the requested data back. With different ―colored‖

memory access types, we can interpret these opcodes as FIFO

load/store operations, synchronized load/store operations, gang

operations (e.g., invalidating a transaction read/write set) or even

simple metadata write/compare/read operations as needed for a

given memory model. For the Smart Memories architecture,

switching to a Tensilica processor solution would be feasible if it

could support different types of memory operations and the

special architectural semantics that they imply, and be able to

recover from speculative execution that needed to be nullified.

There were two main issues that we needed to resolve to use the

Tensilica processors in our architecture. The first was how to

connect it to our coherent memory system, and the second was

how to make the processor recover from mis-speculation.

5.1 Interfacing the Tensilica Processor to

Smart Memories
Although Tensilica provides many options for memory interfaces

(Figure 2), none of these interfaces can be used directly to connect

the Tensilica processor to the rest of the Smart Memories system.

The Xtensa processor has interfaces to implement instruction and

data caches, but these interfaces do not support coherence

operations, and thus could not be used for the multiprocessor

Smart Memories architecture. The Xtensa cache interfaces

connect directly to SRAM arrays for cache tags and data, and the

cache management logic is fixed. As a result, it is impossible to

modify the functionality of the Xtensa caches or to re-use the

same SRAM arrays for different memory structures like local

scratchpads.

To make the problem even more difficult, in addition to simple

load and store instructions, the Smart Memories architecture must

support several other memory operations that utilize the extra

metadata bits. While these memory operations can easily be

added to the instruction set of the processor using the TIE

Figure 3. Tile memory organization: a) bock diagram of the memory mat; b) tile crossbar and IMCN; c) example cache

configuration

language it is impossible to extend Xtensa interfaces to natively

support such instructions.

To resolve these issues, we decided to use instruction and data

RAM interfaces as shown in Figure 4a, instead of cache

interfaces. Rather than connecting these interfaces directly to the

memory arrays, we route all instruction fetches, loads and stores

to the tile interface logic (Load Store Unit), which converts them

into actual control signals for memory blocks used in the current

configuration. Special memory operations are sent to the interface

logic through the TIE lookup port, which has the same latency as

the memory interfaces. If the data for a processor access is ready

in 2 cycles, the interface logic sends it to the appropriate processor

pins. If the reply data is not ready (e.g. due to cache miss,

arbitration conflict in tile crossbar or remote memory access), the

interface logic stalls the processor clock until the data is ready.

The advantage of this approach is that the instruction and data

RAM interfaces are very simple: they consist of enable, write

enable/byte enables, address and write data outputs and return

data input. The meaning of the TIE port pins is defined by

instruction semantics described in TIE. Processor logic on the

critical path is minimal. The interface logic is free to perform any

transformations with the virtual address supplied by the processor.

Moreover, the semantic interpretation of the TIE port accesses is

determined independently and can even be runtime configurable.

Adding special memory instructions to the architecture does add

one complication. Special load instructions can modify metadata

bits, i.e. they can alter the architectural state of the memory.

Standard load instructions do not have side effects, i.e. they do not

alter the architectural state of the memory system, and therefore

they can be executed by the processor as many times as necessary.

Loads might be reissued, for example, because of processor

exceptions as shown in Figure 4b: loads are issued to the memory

system at the end of the E stage, load data is returned to the

processor at the end of the M2 stage, while the processor commit

point is in the W stage, i.e. all processor exceptions are resolved

only in the W stage. Such resolution may ultimately result in re-

execution of the load instruction. Stores, by contrast, are issued

only in the W stage after the commit point.

Therefore, because it would be very difficult to undo any side

effects of special memory operations, they are also issued after the

commit point in W stage, and the processor pipeline was extended

by 2 stages (U1 and U2 in Figure 4b) to have the same 2-cycle

latency for special load instructions.

However, having different issue stages for different memory

operations creates the memory ordering problem illustrated in

Figure 5a. A load following a special load in the application code

is seen by the memory system before the special load because it is

issued in the E stage. To prevent such re-ordering, we added

pipeline interlocks between special memory operations and

ordinary loads and stores. An example of such an interlock is

shown in Figure 5b. The load is stalled in the D stage for 4 cycles

to make sure the memory system sees it 1 cycle after the previous

special load. One extra empty cycle is added between 2

consecutive operations to simplify memory system logic for the

case of synchronization stalls. This does not degrade performance

significantly because such combinations of a special load

followed by a standard load are rare.

This addition of such an interlock alters the semantics of the core

ISA of the Tensilica processor and is outside of the allowed range

of user customizations. Yet we would not be able to implement

our programmable memory system without it. Fortunately, we

were able to work closely with Tensilica’s engineering team to

enable this change and get workarounds for the compiler issues

that this change caused.

Another issue related to the interface between the Tensilica

processor and the memory system is timing. Processor designers

usually avoid stalling the processor clock on cache miss because it

Xtensa

Processor
Instruction
RAM port

Data
RAM port

CLK Tile
Interface

Logic
(LSU)

Instruction
Cache

Data
Cache

TIE lookup port

a)

F1 F2 D E M1 M2 W U1 U2

load

issue

commit point

load

data
store/
custom
op issue

custom
load

data

fetch

issue

fetch

data

b)

Figure 4. a) Interfacing Tensilica processor to Smart Memories; b) processor pipeline

will always create a critical path. The clock gate signal is needed

very early to compensate for the clock tree delay to avoid

glitching the clock. Instead modern machines disable state

updates for squashed instructions, i.e. the write-back stage of the

instruction that caused the cache miss. Unfortunately for us, the

processor is a black box—we cannot change its internal operation

(except by adding features using TIE). Since we were converting

an SRAM interface into a cache interface, the only way to handle

cache misses was to stall the processor clock. We stall the

processor clock in the case of cache miss, crossbar arbitration

failure or off-tile memory mat access (Figure 6). While this is a

clean functional solution, it does create a tight timing path.

The tile timing is therefore determined by very tight timing

constraints on the processor clock signal as shown in Figure 6.

The forward path for the memory operation data issued by the

processor goes through the flop in the interface logic and then

through the flop in the memory mat. In the reverse path, the

output of the memory mat goes to the stall logic and determines

whether the processor clock should be stalled or not. To avoid

glitches on the processor clock, the output of the stall logic must

go through a flop or latch clocked with an inverted clock. The

whole reverse path including memory mat, crossbar and stall logic

delays must fit in a half clock cycle. This half cycle path is the

most critical in the design and determines the clock cycle time. To

relax timing constraints, the processor is clocked with an inverted

clock: the delay of the reverse path must fit within the whole

clock cycle, rather than just the half cycle. This shift does shorten

the time for the E stage to generate the results, but since the

processor does not limit the clock of this system, this path is fast

enough.

s. load F1 F2 D E M1 M2 W U1 U2

issue data

issue data

load F1 F2 D E M1 M2 W U1 U2

s. load F1 F2 D E M1 M2 W U1 U2

load F1 F2 D - - - - E M1 M2 W U1 U2

a)

b)

issue data

issue data

Figure 5. Ordering of memory operations: a) without interlock, b) with interlock

Xtensa Processor

Interface Logic (LSU)
CLK

CLK

Memory

Mat

E

stage

M1

stage

M2

stage

W

stage

F

Crossbar

CLK

stall

logic

a b

F F F F

L

F

Figure 6. Tile timing critical paths: a) forward path from processor to local memory/cache; b) reverse path from local

memory/cache to processor

5.2 Using a Register Windows Mechanism for

Processor State Check-pointing
We leverage another feature of the Tensilica architecture to aid

implementation of modes that support speculative execution. To

checkpoint processor state at the beginning of speculative

execution, previously proposed thread-level speculation (TLS)

architectures modify the register renaming mechanism in out-of-

order execution processors [9][43] or utilize a shadow register file

[15]. It is possible to accomplish the needed checkpoint with little

overhead and almost no hardware support (no shadow registers) in

a machine with register windows such as Tensilica. In order to

explain the proposed approach, let’s consider an example of a

windowed register file that consists of 64 physical registers,

divided into groups of four, with a 16-register window being

visible at any time. Figure 7a shows the two registers that control

the window mechanism. Window Start has one bit per group of

four registers, and indicates where a register window starts.

Window Base is a pointer to the beginning of the current window

in Window Start.

On each function call, as directed by the compiler, the register

window shifts by 4, 8 or 12 registers (Figure 7b). Register

window overflow occurs when, after shifting, Window Start has 1

within the current window (Figure 7c). In this case, an exception

handler is invoked to spill the registers over to the memory.

When the processor runs a speculative thread, register values can

fall into one of the following categories:

 constants, which are passed to the speculative thread and are

not changed during execution;

 shared variables, which are modified by other threads and must

be read from memory before they are used for computation;

 temporary values, which are alive only during the execution of

this thread;

 privatized variables, such as loop induction variable or

reduction variables.

The first three categories do not need to be saved at the start of a

speculative thread, since they are not changed at all or are

reloaded or recalculated. To simplify the violation recovery

process, we have forced privatized variables to go through

memory as well: the values are loaded at the start of the

speculation and are saved back to memory at the end. Software

overhead is typically quite small because speculative threads

usually have few privatized variables.

If a speculative thread does not contain any function calls, the

register window will not move during the execution of the

speculative thread. As discussed, since the registers in the active

window do not change, the recovery process after mis-speculation

is very rapid because no restoration of the register values is

required. However, if there is a function call in the speculative

loop body, the register window will be shifted by the function

call. If a violation is detected while the thread is in the middle of

the function call, the state of the register window must be

recovered correctly. For this purpose, two instructions and a

special register are added to the processor for saving and restoring

Window Start and Window Base values atomically. In order to

keep the recovery operation simple and fast, the exception handler

for the window overflow is also modified to avoid spilling the

registers when the execution is speculative. This way, it is not

necessary to read back the spilled values into the register file in

the case of violation; the window exception handler is simply

stalled until the thread becomes non-speculative and can commit

its changes to the memory system.

In comparison with a shadow register file approach, our technique

requires little extra hardware: a special register to save values of

Window Start and Window Base, and two new instructions. In

comparison with a purely software approach (which takes tens to

a hundred cycles), our technique is significantly faster: it requires

one instruction to save Window Start and Window Base and only

a few store instructions for privatized variables, since a typical

speculative thread rarely has more than two privatized variables. It

should be noted that this checkpointing technique is not applicable

to non-windowed architectures such as MIPS, because function

calls may overwrite any register regardless of how it was used in

the caller function.

5.3 Software and Benchmarking Issues
In theory developing a custom processing core that exactly fits the

architectural requirement of the system will provide better

performance and better power efficiency than reusing an off-the-

shelf core. However, in practice the better software development

infrastructure that accompanies an existing core can easily allow

the programmer to achieve higher application performance. The

0

0

1

0

0

0

0

0

Current

Window

0

0

Window Base

Window Start

0

0

1

0

1

0

0

0

Current

Window

0

0

Window Base

Window Start

0

0

1

0

1

0

1

0

Current

Window

1

0

Window Base

Window Start

Window

Overflow

a) Register window

mechanism

b) Register window shift

because of a function call

c) Window wrap-around

(overflow)

Figure 7. Register windows

overall system performance is as dependent on the software tools

quality (compiler, linker, etc) as it is on the hardware.

The availability of a high-quality optimizing Tensilica compiler

makes benchmarking of the architecture simpler and more

credible. We did not have to resort to hand-coding of

microbenchmarks [13], instead we could concentrate on

performance evaluation using applications such as SPLASH-2

[50], and the TCC version of SPLASH-2 benchmarks [31]. Not

surprisingly the level of compiler optimizations affected

benchmark performance and the way performance scaled with

number of processors.

Figure 8 shows speedups versus the number of processors for two

versions of the same barnes application. One of them is the

original code from the SPLASH-2 suite designed for shared

memory cache-coherent architectures (designated as CC), the

other is a version of the same application converted for a

transactional memory architecture, TCC [31]. Figure 8a shows

performance scaling for un-optimized executables, compiled with

option –O0, and normalized to a shared memory version running

on a single processor. Similarly, Figure 8b shows performance

scaling for executables compiled with option –O1. Finally, Figure

8c shows performance scaling for executables with highest level

of optimization, compiled with options –O3 and –ipa (ipa stands

for inter-procedural analysis).

The version compiled with the highest level of optimization is

approximately 4 times faster than the un-optimized version, and

2.5 times faster than the version compiled with option –O1. Also,

at the highest level of optimization performance, the scaling of the

TCC version is noticeably worse: on a 16-processor configuration

it is 1.62x slower than the shared memory version, while in the

case of un-optimized code (Figure 8a) it is only 1.35x slower than

the shared memory version. Of course, these results are dependent

on the cache configuration and details of our implementation of

TCC, which uses software in the runtime to implement part of the

protocol [41]. In fact most of this overhead comes from executing

extra instructions during transaction commit. This overhead is less

than 10% on a single processor configuration for all cases (Figure

8).

We spent significant effort trying to optimize and tune the

performance of the TCC version of barnes. Figure 9 shows

performance scaling of the tuned version of barnes (TCC) versus

the original version from [31] (designated as TCC frequent

commits). In simulating this application, it became clear that the

original TCC version did not scale well in the most optimized

case (Figure 9c) because of the large number of commits inside

0

2

4

6

8

10

12

14

16

0 5 10 15

CC

TCC

0

2

4

6

8

10

12

14

16

0 5 10 15

CC

TCC

0

2

4

6

8

10

12

14

16

0 5 10 15

CC -O3 -ipa

TCC -O3 -ipa

CC -O1

TCC -O1

CC -O0

TCC -O0

a) b) c)

0

2

4

6

8

10

12

14

16

0 5 10 15

CC

TCC

TCC frequent
commits

0

2

4

6

8

10

12

14

16

0 5 10 15

CC

TCC

TCC frequent
commits

0

2

4

6

8

10

12

14

16

0 5 10 15

CC

TCC

TCC frequent
commits

 a) b) c)

Figure 8. Speedups of TCC and cache-coherent (CC) versions of barnes: a) compiled with –O0, b) compiled with –O1, c) compiled

with –O3 –ipa vs. a) and b)

Figure 9. TCC barnes optimization: a) complied with –O0, b) compiled with –O1, c) compiled with –O3 –ipa

recursive function calls of the main computation loop. Elimination

of these frequent unnecessary commits improved performance by

approximately 3x.

Similarly, when we tried to compare streaming and shared

memory architectures using the Smart Memories infrastructure

[27] we found that the result of comparison is highly dependent

on the software optimizations of the benchmarks. In fact, many

streaming optimizations can be applied to a shared memory

version of the same benchmark with significant improvements in

performance and energy dissipation. Figure 10 shows normalized

execution time and off-chip memory traffic for a parallelized

version of 179.art benchmark from the SPEC2000 suite. ORIG is

the original version; OPT1, OPT2 and OPT3 are successively

more optimized versions of the same applications (a detailed

description of the optimizations can be found in [27][41]). While

the original shared memory version of 179.art is significantly

slower than streaming, the most optimized shared memory version

has approximately the same performance. Enabling this type of

software tuning completely changed the conclusion about the

importance of creating a streaming memory system.

5.4 Status and Lessons Learned
Clearly, no matter how much effort Tensilica or any other vendor

put in to it, no off-the-shelf processing core would ever hold the

exact features required for a new architecture. However, with the

current generation of extensible processors we can come very

close to that goal. With the ability to add new instructions and

ports (using TIE and TIE ports in the Tensilica system) and being

willing to accept practical solutions with a few workarounds, new

architectures can be realized and can significantly benefit from

software tooling reuse. Especially important are compiler

optimizations, as those enable true comparisons of the new

architecture to well established ones.

Leveraging Tensilica cores and software stack we implemented an

extensible multi-processor architecture. Both the system simulator

and the RTL design were tested to run with up to 32 active

processors (four quads). Eventually, the architecture was validated

against three specific models: cache-coherent shared memory [1],

streaming [45] [21] and TCC [16].

An 8-core (one quad) test chip was fabricated using ST

Microelectronics 90 nm technology. It contains four tiles, each

with two Tensilica processors, and a shared protocol controller.

The total chip area is 60.5 mm2 and contains 55 million

transistors. The chip successfully passed extensive testing, starting

from JTAG configuration, on-chip memory read-write tests, and

running scaled-up application programs in the three target modes

of operation. We are currently working on bringing up 32-

processor system with 4 Smart Memories test chips.

6. CONCLUSIONS
A pre-existing extensible processor system, such as that provided

by Tensilica, can turn an otherwise unmanageable, overly-

ambitious architecture project into a feasible effort successfully

completed despite severely limited manpower resources.

For instance, building a successful computing system at a

university has always been a difficult task. The most successful

projects manage the amount of work required by focusing their

effort on a few core research issues, and try to leverage existing

tools and techniques from others for the remaining non-core

issues. This issue of focus has become especially acute in

building new processor systems, where the level of software

infrastructure that is needed to create a useable platform is quite

large. It is for this reason that much of the work on

multiprocessors has used existing ISAs and even processor

boards, and why so many new architecture demonstrations are

based on the open source SPARC designs. Of course, the

downside of using an established ISA/architecture is that the new

ideas become more difficult to realize.

When working on the reconfigurable Smart Memories project, we

used an extensible processor system that could produce a

customized processor and necessary software tools. While this

decision constrained many aspects of the overall system, it

allowed us to focus on the design of the reconfigurable memory

system and to successfully design and fabricate a test chip with a

production quality software environment. The strong software

tools made it easier to run more applications, but this just drove

home the point that the evaluation of new architecture is tricky.

Since the interaction between application sharing patterns and the

Figure 10. The effect of stream programming optimizations on the shared memory 179.art’s performance and off-chip traffic [27]

underlying hardware capabilities can be surprising, it requires a

significant amount of work on application optimization and tuning

to get meaningful results.

Our current work continues to explore the potential of extensible

processors. We have found that Smart Memories can provide the

basis for evaluating a number of architectural ideas, since both

processor and memory system are highly flexible. This has led to

our current research in building a CMP generator [42]. The idea is

to use the reconfigurable Smart Memories architecture as a virtual

prototyping platform that lets an application designer configure

memory operations, protocols, and the underlying processor

instructions, to tune the machine for a specific application or

application class, while still maintaining a high-quality software

development environment. Preliminary results indicate that this

approach could create computing solutions that are orders of

magnitude more energy efficient than conventional approaches.

7. ACKNOWLEDGMENTS
This work would have not been possible without great support and

cooperation from many people at Tensilica: Chris Rowen, Dror

Maydan, Bill Huffman, Nenad Nedeljkovic, David Heine, Govind

Kamat and others. The authors also would like to acknowledge

support from DARPA and ST Microelectronics. The authors also

would like to thank Han Chen, Kyle Kelley, Francois Labonte,

Jacob Chang and Don Stark for their help and support.

8. REFERENCES
[1] S.V. Adve, K. Gharachorloo. Shared Memory Consistency

Models: A Tutorial. Computer, vol.29, no.12, pp. 66-76,

December 1996.

[2] A. Agarwal, et al. Sparcle: An Evolutionary Processor

Design for Large-Scale Multiprocessors. IEEE Micro

Magazine, vol. 13 no. 3, pp. 48-61, May 1993.

[3] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, A. Das.

Evaluating the Imagine Stream Architecture. Proceedings of

the International Symposium on Computer Architecture,

June 2004.

[4] K. Arvind, R. S. Nikhil. Executing a Program on the MIT

Tagged-Token Dataflow Architecture. IEEE Transactions

Computers, 39, 3, pp. 300-318, Mar. 1990.

[5] W. Baek, C. C. Minh, M. Trautmann, C. Kozyrakis, and K.

Olukotun. The OpenTM Transactional Application

Programming Interface. Proceedings of the International

Conference on Parallel Architecture and Compilation

Techniques, pp. 376-387, September 2007.

[6] R. Barua, W. Lee, S. Amarasinghe, A. Agarwal. Compiler

Support for Scalable and Efficient Memory Systems. IEEE

Transactions on Computers, November 2001.

[7] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, Monica

Lam, Margie Levine, Brian Moore, Wire Moore, C. Peterson,

J. Susman, J. Sutton, J. Urbanski, and J. Webb. Supporting

Systolic and Memory Communication in iWarp. Proceedings

of the International Symposium on Computer Architecture,

Seattle, Washington, pp. 70 - 81, May 1990.

[8] F. C. Chow, J. L. Hennessy and L. B. Weber. The MIPS

Compiler. Chapter 20 in "Optimization in Compilers", edited

by F. Allen, B. K. Rosen, and K. Zadeck, by The Association

for Computing Machinery, Inc., 1991.

[9] M. Cintra, et al. Architectural Support for Scalable

Speculative Parallelization in Shared-Memory

Multiprocessors. Proceedings of the International

Symposium on Computer Architecture, June 2000.

[10] A. Das, W. J. Dally, P. Mattson. Compiling for Stream

Processing. Proceedings of the International Conference on

Parallel Architectures and Compilation Techniques, 2006.

[11] Dehnert, J. C. and Towle, R. A. 1993. Compiling for the

Cydra 5. Journal of Supercomputing, 7, 1-2, pp. 181-227,

May 1993.

[12] A. Firoozshahian, A. Solomatnikov, O. Shacham, S.

Richardson, C. Kozyrakis, M. Horowitz. A Memory System

Design Framework: Creating Smart Memories. Proceeding

of the International Symposium on Computer Architecture,

pp. 406-417, June 2009.

[13] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz,

M. Marino, N. Ranganathan, B. Robatmili, A. Smith, J.

Burrill, S. W. Keckler, D. Burger, and K. S. McKinley. An

Evaluation of the TRIPS Computer System. Proceeding of

the International Conference on Architectural Support for

Programming Languages and Operating Systems, March

2009.

[14] R. Gonzalez. Xtensa: A Configurable and Extensible

Processor. IEEE Micro, 20(2):60–70, Mar/Apr 2000.

[15] L. Hammond, B. Hubbert, M. Siu, M. Prabhu , M. Chen , K.

Olukotun. The Stanford Hydra CMP. IEEE Micro, March-

April 2000.

[16] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. D.

Carlstrom, J. D. Davis, M. K. Prabhu, H. Wijaya, C.

Kozyrakis, K. Olukotun. Transactional Memory Coherence

and Consistency. Proceedings of the International

Symposium on Computer Architecture, June 2004.

[17] M. Herlihy and J. E. Moss, "Transactional memory:

architectural support for lock-free data structures,"

Proceedings of the International Symposium on Computer

Architecture, pp. 289-300, May 1993.

[18] W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D.

M. Lavery, G. E. Haab, J. C. Gyllenhaal, and D. I. August.

Compiler Technology for Future Microprocessors.

Proceedings of the IEEE, vol. 83, no. 12, pp. 1625-1640,

December 1995.

[19] D Jani, G Ezer, J Kim. Long words and wide ports:

Reinventing the Configurable Processor. Hot Chips, August

2004.

[20] H. Kannan, M. Dalton, C. Kozyrakis. Raksha: A Flexible

Architecture for Software Security. Hot Chips, August 2007.

[21] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Mattson,

J. Namkoong, J. D. Owens, B. Towles, and A. Chang.

Imagine: Media Processing with Streams. IEEE Micro, pages

35–46, Mar/Apr 2001.

[22] R. Krishnaiyer; D. Kulkami; D. Laven; L. Wei, C.-C. Lim; J.

Ng; D. Sehr. An Advanced Optimizer for the IA-64

Architecture. IEEE Micro, vol.20, no.6, pp. 60-68, Nov/Dec

2000.

[23] R.C. Kunz. Performance Bottlenecks On Large-Scale

Shared-Memory Multiprocessors. PhD Thesis, Stanford

University, 2004.

[24] J. Kuskin, et al. The Stanford FLASH Multiprocessor.

Proceedings of the International Symposium on Computer

Architecture, pp. 302-313, April 1994.

[25] S. Leibson, J. Kim. Configurable Processors: A New Era in

Chip Design. IEEE Computer, vol.38, no.7, pp. 51-59, July

2005.

[26] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J.

Hennessy. The Directory-Based Cache Coherence Protocol

for the DASH Multiprocessor. Proceedings of the

International Symposium on Computer Architecture, pp.

148-159, 1990.

[27] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,

C. Kozyrakis. Comparative Evaluation of Memory Models

for Chip Multiprocessors. ACM Transactions on

Architecture and Code Optimization, November 2008.

[28] G. P. Lowney, S. M. Freudenberger, T. J. Karzes, W. D.

Lichtenstein, R. P. Nix, J. S. O'Donnell, and J. C.

Ruttenberg. The Multiflow Trace Scheduling Compiler. The

Journal of Supercomputing, vol. 7, no. 1-2, pp. 51-142, 1993.

[29] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, M.

Horowitz. Smart Memories: a Modular Reconfigurable

Architecture. Proceedings of the International Symposium on

Computer Architecture, pp. 161–171, 2000.

[30] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and M.

Horowitz. Architecture and circuit techniques for a 1.1-GHz

16-kb reconfigurable memory in 0.18u CMOS. IEEE Journal

of Solid-State Circuits, 40(1):261–275, 2005.

[31] A. McDonald, J. Chung, H. Chafi, C. C. Minh, B. D.

Carlstrom, L. Hammond, C. Kozyrakis, and K. Olukotun.

Characterization of TCC on Chip-Multiprocessors.

Proceedings of the International Conference on Parallel

Architecture and Compilation Techniques, pp. 63-74,

September 2005.

[32] A. McDonald, J. Chung, B. Carlstrom, C. C. Minh, H. Chafi,

C. Kozyrakis, and K. Olukotun. Architectural Semantics for

Practical Transactional Memory. Proceedings of the

International Symposium on Computer Architecture, June

2006.

[33] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.

Stamp: Stanford Transactional Applications for Multi-

Processing. Proceedings of the IEEE International

Symposium on Workload Characterization, pp. 35-46, 2008.

[34] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C.

Lewis, and D. A. Wood. The Wisconsin Wind Tunnel:

Virtual Prototyping of Parallel Computers. Proceedings of

the ACM Sigmetrics Conference on Measurement and

Modeling of Computer Systems, pp. 48–60, May 1993.

[35] M. D. Noakes, D. A. Wallach and W. J. Dally. The J-

Machine Multicomputer: An Architectural Evaluation.

Proceedings of the International Symposium on Computer

Architecture, pp. 224 – 235, 1993.

[36] D. Patterson. Reduced Instruction Set Computers.

Communications of the ACM, vol. 28, no.1, January 1985,

pp. 9-21.

[37] A. Rappaport. Semiconductor Value in the Post Fabless Era.

Talk at the Stanford EE Computer Systems Colloquium,

January 2009,

http://www.stanford.edu/class/ee380/Abstracts/090128.html

[38] O. Shacham, Z. Asgar, H. Chen, A. Firoozshahian, R.

Hameed, C. Kozyrakis, W. Qadeer, S. Richardson, A.

Solomatnikov, D. Stark, M. Wachs, M. Horowitz. Smart

Memories Polymorphic Chip Multiprocessor. Proceedings of

the Design Automation Conference, July 2009.

[39] M.S. Schlansker, B.R. Rau. EPIC: Explicitly Parallel

Instruction Computing. IEEE Computer, vol.33, no.2, pp.37-

45, Feb 2000.

[40] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B.

Yoder, D.C. Burger, and K.S. McKinley. Compiling for

EDGE Architectures. International Conference on Code

Generation and Optimization (CGO), March, 2006.

[41] A. Solomatnikov. Polymorphic Chip Multiprocessor

Architecture. PhD Thesis, Stanford University, 2008.

[42] A. Solomatnikov, A. Firoozshahian, W. Qadeer, O.

Shacham, K. Kelley, Z. Asgar, M. Wachs, R. Hameed, and

M. Horowitz. Chip Multi-Processor Generator. Proceedings

of the Design Automation Conference, June 2007.

[43] J. G. Steffan, et al. A Scalable Approach to Thread-Level

Speculation. Proceedings of International Symposium on

Computer Architecture, June 2000.

[44] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A.

Putnam, K. Michelson, M. Oskin, S.J. and Eggers. The

WaveScalar architecture. ACM Transactions on Computer

Systems, 25, 2, 4, May 2007.

[45] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B.

Greenwald, H. Hoffmann, P. Johnson, J.-W. Lee, W. Lee, A.

Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M.

Frank, S. Amarasinghe and A. Agarwal. The Raw

Microprocessor: A Computational Fabric for Software

Circuits and General Purpose Programs. IEEE Micro,

Mar/Apr 2002.

[46] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B.

Greenwald, H. Hoffmann, P. Johnson, J. Kim, J. Psota, A.

Saraf, N. Shnidman, V. Strumpen, M. Frank, S.

Amarasinghe, and A. Agarwal. Evaluation of the Raw

Microprocessor: An Exposed-Wire-Delay Architecture for

ILP and Streams. Proceedings of International Symposium

on Computer Architecture, June 2004.

[47] Xtensa XTMP and XTSC. Tensilica.

http://www.tensilica.com/products/devtools/hw_dev/sw_xtm

p_xtsc.htm

[48] W. Thies, M. Karczmarek, and S. P. Amarasinghe.

StreaMIT: A Language for Streaming Applications.

Proceedings of the International Conference on Compiler

Construction, pp. 179-196, 2002.

[49] A. Wang, E. Killian, D. Maydan, and C. Rowen.

Hardware/Software Instruction Set Configurability for

System-on-Chip Processors. Proceedings of the Conference

on Design Automation, 2001.

[50] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta. The

SPLASH-2 Programs: Characterization and Methodological

Considerations. Proceedings of the International Symposium

on Computer Architecture, pp. 24-36, June 1995.

	INTRODUCTION AND MOTIVATION
	RELATED WORK
	SMART MEMORIES, VERSION I
	TENSILICA OVERVIEW
	SMART MEMORIES, VERSION II
	Interfacing the Tensilica Processor to Smart Memories
	Using a Register Windows Mechanism for Processor State Check-pointing
	Software and Benchmarking Issues
	Status and Lessons Learned

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

