Comparative Evaluation of Memory Models
for Chip Multiprocessors

JACOB LEVERICH, HIDEHO ARAKIDA, ALEX SOLOMATNIKOV,
AMIN FIROOZSHAHIAN, MARK HOROWITZ, and CHRISTOS KOZYRAKIS

Stanford University

There are two competing models for the on-chip memory in Chip Multiprocessor (CMP) systems:
hardware-managed coherent caches and software-managed streaming memory. This paper performs
a direct comparison of the two models under the same set of assumptions about technology, area,
and computational capabilities. The goal is to quantify how and when they differ in terms of perfor-
mance, energy consumption, bandwidth requirements, and latency tolerance for general-purpose
CMPs. We demonstrate that for data-parallel applications on systems with up to 16 cores, the
cache-based and streaming models perform and scale equally well. For certain applications with
little data reuse, streaming scales better due to better bandwidth use and macroscopic software
prefetching. However, the introduction of techniques such as hardware prefetching and nonallo-
cating stores to the cache-based model eliminates the streaming advantage. Overall, our results
indicate that there is not sufficient advantage in building streaming memory systems where all
on-chip memory structures are explicitly managed. On the other hand, we show that streaming
at the programming model level is particularly beneficial, even with the cache-based model, as
it enhances locality and creates opportunities for bandwidth optimizations. Moreover, we observe
that stream programming is actually easier with the cache-based model because the hardware
guarantees correct, best-effort execution even when the programmer cannot fully regularize an
application’s code.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles; C.1.2 [Processor
Architectures]: Multiple Data Stream Architectures (Multiprocessors); D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms: Performance, Design

Additional Key Words and Phrases: Chip multiprocessors, cache coherence, streaming memory,
parallel programming, locality optimizations

ACM Reference Format:

Leverich, J., Arakida, H., Solomatnikov, A., Firoozshahian, A., Horowitz, M., and Kozyrakis, C.
2008. Comparative evaluation of memory models for chip multiprocessors. ACM Trans. Architec.
Code Optim. 5, 3, Article 12 (November 2008), 30 pages. DOI = 10.1145/1455650.1455651
http://doi.acm.org/10.1145/1455650.1455651

Authors’ address:

Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2008 ACM 1544-3566/2008/11-ART12 $5.00 DOI 10.1145/1455650.1455651 http://doi.acm.org/
10.1145/1455650.1455651

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:2 o J. Leverich et al.

1. INTRODUCTION

The scaling limitations of uniprocessors [Agarwal et al. 2000] have led to an
industry-wide turn towards chip multiprocessor (CMP) systems. CMPs are
becoming ubiquitous in all computing domains. Unlike uniprocessors, which
have a dominant, well-understood model for on-chip memory structures, there
is no widespread agreement on the memory model for CMP designs. The choice
of memory model can significantly impact efficiency in terms of performance,
energy consumption, and scalability. Moreover, it is closely coupled with the
choice of parallel programming model, which in turn affects ease of use. Al-
though it is possible to map any programming model to any memory model,
it is typically more efficient if the programming model builds upon the basic
principles of the memory model.

Similar to larger parallel systems [Culler et al. 1999], there are two
competing memory models for contemporary CMP systems: hardware-
managed, implicitly-addressed, coherent caches and software-managed, explic-
itly-addressed, local memories (also called streaming memory). With the cache-
based model, all on-chip storage is used for private and shared caches that
are kept coherent by hardware. The advantage is that the hardware provides
best-effort locality and communication management, even when the access and
sharing patterns are difficult to statically analyze. With the streaming memory
model, part of the on-chip storage is organized as independently addressable
structures. Explicit accesses and DMA transfers are needed to move data to
and from off-chip memory or between two on-chip structures. The advantage
of streaming memory is that it provides software with full flexibility on local-
ity and communication management in terms of addressing, granularity, and
replacement policy. Since communication is explicit, it can also be proactive,
unlike the traditionally reactive behavior of the cache-based model. Hence,
streaming allows software to exploit producer-consumer locality, avoid redun-
dant write-backs for temporary results, manage selective data replication, and
perform application-specific caching and macroscopic prefetching. Streaming
eliminates the communication overhead and hardware complexity of the coor-
dination protocol needed for cache coherence. On the other hand, it introduces
software complexity, since either the programmer or the compiler must explic-
itly manage locality and communication.

Traditional desktop and enterprise applications are difficult to analyze and
favor cache-based systems. In contrast, many upcoming applications from the
multimedia, graphics, physical simulation, and scientific computing domains
are being targeted by both cache-based [Andrews and Backer 2005; Yeh 2005]
and streaming [Ahn et al. 2004; Taylor et al. 2004; Dally et al. 2003; Gschwind
et al. 2005; Machnicki 2005; Khailany et al. 2008] systems. The debate is par-
ticularly interesting vis-a-vis contemporary game consoles. The CMPs for the
Xbox360 and PlayStation 3 are similar in terms of the type of processors they
use: dual-issue, in-order RISC cores with 128-bit SIMD support [Andrews and
Backer 2005; Gschwind et al. 2005]. However, they differ dramatically in their
on-chip memory model, as Xbox360’s Xenon processor (Waternoose) is a cache-
based CMP while PlayStation 3’s Cell processor is a streaming memory CMP.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:3

Hence, it is interesting to evaluate if streaming provides specific benefits to
this domain, or if using a cache-based approach across all application domains
should be preferable.

The goal of this article is to compare the efficiency of the two memory models
under the same set of assumptions about technology, area, and computational
capabilities. Specifically, we are interested in answering the following ques-
tions: How do the two models compare in terms of overall performance and
energy consumption? How does the comparison change as we scale the number
or compute throughput of the processor cores? How sensitive is each model to
bandwidth or latency variations? Are multilevel memory hierarchies equally
important for both models? We believe that such a direct comparison will pro-
vide valuable information for the CMP architecture debate and generate some
guidelines for the development of future systems.

The major conclusions from our comparison are:

e For data-parallel applications on systems with up to 16 cores and abundant
data reuse, the two models perform and scale equally well. Caches are as
effective as software-managed memories at capturing locality and reducing
average memory access time. For some of these applications, streaming has
an energy advantage of 10% to 25% over write-allocate caches because it
avoids superfluous refills on output data streams. Using a no-write-allocate
policy for output data in the cache-based system reduces the streaming ad-
vantage.

¢ For applications without significant data reuse, macroscopic prefetching
(double-buffering) provides streaming memory systems with a performance
advantage when we scale the number and computational capabilities of
the cores. The use of hardware prefetching with the cache-based model
eliminates the streaming advantage for some latency-bound applications.
There are also cases where streaming performs worse, such as when it
requires redundant copying of data or extra computation to manage local
stores.

¢ Our results indicate that a pure streaming memory model is not sufficiently
advantageous at the memory system level. With the addition of prefetch-
ing and nonallocating writes, the cache-based model provides similar perfor-
mance, energy, and bandwidth behavior. On the other hand, we found that
“streaming” at the programming model level is very important, even with
the cache-based model. Properly blocking an application’s working set, ex-
posing producer-consumer locality, and identifying output-only data leads
to significant efficiency gains. Moreover, stream programming leads to code
that requires coarser-grain and lower-frequency coherence and consistency
in a cache-based system. This observation will be increasingly relevant as
CMPs scale to much larger numbers of cores.

¢ Finally, we observe that stream programming is actually easier with the
cache-based model because the hardware guarantees correct, best-effort ex-
ecution, even when the programmer cannot fully regularize an application’s
code. With the streaming memory model, the software must orchestrate lo-
cality and communication perfectly, even for irregular codes.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:4 o J. Leverich et al.

The remainder of this article is organized as follows: Section 2 summarizes
the two memory models and discusses their advantages and drawbacks. Sec-
tion 3 presents the architectural framework for our comparison and Section 4
describes the experimental methodology. Section 5 analyzes our evaluation re-
sults. Section 6 focuses on streaming at the programming level and its inter-
actions with CMP architecture. Section 7 addresses limitations in our study.
Finally, Section 8 reviews related work and Section 9 concludes the article.

2. ON-CHIP MEMORY MODELS FOR CHIP MULTIPROCESSORS

General-purpose systems are designed around a computational model and a
memory model. The computational model defines the organization of execu-
tion resources and register files and may follow some combination of the the
superscalar, VLIW, vector, or SIMD approaches. The memory model defines
the organization of on-chip and off-chip memories as well as the communica-
tion mechanisms between the various computation and memory units. The two
models are linked, and an efficient system is carefully designed along both di-
mensions. However, we believe that the on-chip memory model creates more
interesting challenges for CMPs. First, it is the one that changes most dra-
matically compared to uniprocessor designs. Second, the memory model has
broader implications on both software and hardware. Assuming we can move
the data close to the execution units in an efficient manner, it is not difficult
to select the proper computational model based on the type(s) of parallelism
available in the computation kernels.

For both the cache-based and streaming models, certain aspects of the on-chip
memory system are set by VLSI constraints such as wire delay [Ho et al. 2001].
Every node in the CMP system is directly associated with a limited amount
of storage (first-level memory) that can be accessed within a small number
of cycles. Nodes communicate by exchanging packets over an on-chip network
that can range from a simple bus to a hierarchical structure. Additional memory
structures (second-level memory) are also connected to the network fabric. The
system scales with technology by increasing the number of nodes, the size of the
network, and the capacity of second-level storage. Eventually, the scale of a CMP
design may be limited by off-chip bandwidth or energy consumption [Horowitz
and Dally 2004].

Although they are under the same VLSI constraints, the cache-based and
streaming models differ significantly in the way they manage data locality and
inter-processor communication. As shown in Table I, the cache-based model
relies on hardware mechanisms for both, while the streaming model delegates
management to software.

The rest of this section overviews the protocol and operation for each memory
model for CMP systems. The discussion below separates the two memory mod-
els from the selection of a computation model. The streaming memory model
is general and has already been used with VLIW/SIMD systems [Ahn et al.
2004], RISC cores [Taylor et al. 2004], vector processors [Lin 2004], and even
DSPs [Machnicki 2005]. The cache-based model can be used with any of these
computation models as well.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:5

Table I. The Design Space for on-Chip Memory for CMPs

- Communication

R H/W S/W

S HW Coherent Cache-based Incoherent Cache-based
S SW (Impractial) Steaming Memory

This work focuses on the two highlighted options: Coherent cache-based and stream-
ing memory. The third practical option, incoherent cache-based, is briefly discussed
in Section 7.

2.1 Coherent Cache-based Model

With the cache-based model [Culler et al. 1999], the only directly addressable
storage is the off-chip memory. All on-chip storage is used for caches with hard-
ware management of locality and communication. As cores perform memory
accesses, the caches attempt to capture the application’s working set by fetch-
ing or replacing data at the granularity of cache blocks. The cores communicate
implicitly through loads and stores to the single memory image. Because many
caches may store copies of a specific address, it is necessary to query multi-
ple caches on load and store requests and potentially invalidate entries to keep
caches coherent. A coherence protocol, such as MESI, minimizes the cases when
remote cache lookups are necessary. Remote lookups can be distributed through
a broadcast mechanism or by first consulting a directory structure. The cores
synchronize using atomic operations such as compare-and-swap. Cache-based
systems must also provide event-ordering guarantees within and across cores
following some consistency model [Adve and Gharachorloo 1996]. Caching, co-
herence, synchronization, and consistency are implemented in hardware.

Coherent caching techniques were developed for board-level and cabinet-
level systems (SMPs and DSMs), for which communication latency ranges from
tens to hundreds of cycles. In CMPs, coherence signals travel within one chip,
where latency is much lower and bandwidth is much higher. Consequently, even
algorithms with nontrivial amounts of communication and synchronization can
scale reasonably well. Moreover, the efficient design points for coherent caching
in CMPs are likely to be different from those for SMP and DSM systems.

2.2 Streaming Memory Model

With streaming, the local memory for data in each core is a separately address-
able structure called a scratch-pad, local store, or stream register file. We adopt
the term local store in this work. Software is responsible for managing locality
and communication across local stores. Software has full flexibility in placing
frequently accessed data in local stores with respect to location, granularity,
replacement policy, allocation policy, and even the number of copies. For ap-
plications with statically analyzable access patterns, software can exploit this
flexibility to minimize communication and overlap it with useful computation
in the best possible application-specific way. Data are communicated between
local stores or to and from off-chip memory using explicit DMA transfers. The
cores can access their local stores as FIFO queues or as randomly indexed
structures [Jayasena 2005]. The streaming model requires DMA engines, but
no other special hardware support for coherence or consistency.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:6 o J. Leverich et al.

2.3 Qualitative Comparison

When considering the memory system alone, we find several ways in which
cache-based and streaming memory systems may differ: bandwidth utiliza-
tion, latency tolerance, performance, energy consumption, and cost. This sec-
tion summarizes each of these differences in a qualitative manner.

2.3.1 Off-chip Bandwidth and Local Memory Utilization. The cache-based
model leads to bandwidth and storage capacity waste on sparsely strided mem-
ory accesses. In the absence of spatial locality, manipulating data at the granu-
larity of wide cache lines is wasteful. Streaming memory systems, by virtue of
strided scatter and gather DMA transfers, can use the minimum memory chan-
nel bandwidth necessary to deliver data, and also compact the data within the
local store. Note, however, that memory and interconnect channels are typically
optimized for block transfers and may not be bandwidth efficient for strided or
scatter/gather accesses.

Caching can also waste off-chip bandwidth on unnecessary refills for output
data. Because caches often use write-allocate policies, store misses force mem-
ory reads before the data are overwritten in the cache. If an application has
disjoint input and output streams, the refills may waste a significant percent-
age of bandwidth. Similarly, caching can waste bandwidth on write-backs of
dead temporary data. A streaming system does not suffer from these problems,
as the output and temporary buffers are managed explicitly. Output data are
sent off-chip without refills, and dead temporary data can be ignored, as they
are not mapped to off-chip addresses. To mitigate the refill problem, cache-based
systems can use a no-write-allocate policy. In this case, it is necessary to group
store data in write buffers before forwarding them to memory in order to avoid
wasting bandwidth on narrow writes [Andrews and Backer 2005]. Another ap-
proach is to use cache control instructions, such as “Prepare For Store,” [MIPS32
2001] that instruct the cache to allocate a cache line but avoid retrieval of the
old values from memory. Similarly, temporary data can be marked invalid at
the end of a computation [Chiueh 1993; Wang et al. 2002]. In any case, software
must determine when to use these mechanisms.

Streaming systems may also waste bandwidth and storage capacity on pro-
grams with statically unpredictable, irregular data patterns. A streaming sys-
tem can sometimes cope with these patterns by fetching a superset of the needed
input data. Alternatively, at the cost of enduring long latencies, the system could
use a DMA transfer to collect required data on demand from main memory be-
fore each computational task. For programs that operate on overlapping blocks
or graph structures with multiple references to the same data, the streaming
system may naively re-fetch data. This can be avoided through increased ad-
dress generation complexity or software caching. Finally, for applications that
fetch a block and update some of its elements in-place, a streaming system
will often write back the whole block to memory at the end of the computation,
even if some data were not updated. In contrast to all of these scenarios, cache-
based systems perform load and store accesses on demand and, hence, only
move cache lines as required. They may even search for copies of the required
data in other on-chip caches before going off-chip.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:7

2.3.2 Latency Tolerance. The cache-based model is traditionally reactive,
meaning that a miss must occur before a fetch is triggered. Memory latency
can be hidden using hardware prefetching techniques, which detect repet-
itive access patterns and issue memory accesses ahead of time, or proac-
tive software prefetching. In practice, the DMA transfers in the streaming
memory model are an efficient and accurate form of software prefetching.
They can hide a significant amount of latency, especially if double-buffering
is used. Unlike hardware prefetching, which requires a few misses before a
pattern is detected (microscopic view), a DMA access can start arbitrarily early
(macroscopic view) and can capture both regular and irregular (scatter/gather)
accesses.

2.3.3 Performance. From the discussion so far, one can conclude that
streaming memory may have a performance or scaling advantage for regu-
lar applications, due to potentially better latency tolerance and better usage
of off-chip bandwidth or local storage. These advantages are important only
if latency, bandwidth, or local storage capacity are significant bottlenecks to
begin with. For example, reducing the number of misses is unimportant for a
computationally intensive application that already has very good locality. In
the event that an application is bandwidth-bound, latency tolerance measures
will be ineffective. A drawback for streaming, even with regular code, is that
it often has to execute additional instructions to set up DMA transfers. For
applications with unpredictable data access patterns or control flow, a stream-
ing system may execute more instructions than that of a cache-based system
to produce predictable patterns or to use the local store to emulate a software
cache.

2.3.4 Energy Consumption. Any performance advantage also translates to
an energy advantage, as it allows us to turn off the system early or scale down its
power supply and clock frequency. Streaming accesses to the first-level storage
eliminate the energy overhead of caches (tag access and tag comparison). The
cache-based model consumes additional energy for on-chip coherence traffic,
snoop requests or directory lookups. Moreover, efficient use of the available
off-chip bandwidth by either of the two models (through fewer transfers or
messages) reduces the energy consumption by the interconnect network and
main memory.

2.3.5 Complexity and Cost. 1t is difficult to make accurate estimates of
hardware cost without comparable implementations. The hardware for the
cache-based model is generally more complex to design and verify, as coher-
ence, synchronization, consistency, and prefetching interact in subtle ways.
Still, reuse across server, desktop, and embedded CMP designs can significantly
reduce such costs. On the other hand, streaming passes the complexity to soft-
ware, the compiler, and/or the programmer. For applications in the synchronous
data-flow, DSP, or dense matrix domains, it is often straight forward to express
a streaming algorithm. For other applications, it is nontrivial, and a single good
algorithm is often a research contribution in itself [Drake et al. 2006; Foley and
Sugerman 2005]. Finally, complexity and cost must also be considered with

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:8 o J. Leverich et al.

C Core | [C C
|IoreI||Iore| |IoreI||IoreI| v

Cache-coherent I i
e aal N\ | [Tocal Network_] L2 [TocalNetwork] | / Streaming
NLT_L[LT[e | L1 T T model
- an [Cache]
[Core l | Core | I Core | | Core I -Cache
/-

T
ol Global Network | \
I

7| Leeelllcore]l o flcar]flcore |\
T 1 L_T | cache T 1 Cache| | Buffers

L | Network L | Network
CC Engine / [T ll gank [e || \ [OMA Engine |
V | Core I | Core ||__|mm | Core | | Core | \

Fig. 1. The architecture of the CMP system with up to 16 processors. The core organizations for
the cache-based and streaming models are shown on the left and right side respectively.

scaling in mind. A memory model has an advantage if it allows efficient use
of more cores without the need for disproportional increases in bandwidth or
some other resource in the memory system.

3. CMP ARCHITECTURE FRAMEWORK

We compare the two models using the CMP architecture shown in Figure 1.
There are numerous design parameters in a CMP system, and evaluating the
two models under all possible combinations is infeasible. Hence, we start with
a baseline system that represents a practical design point and vary only the
key parameters that interact significantly with the on-chip memory system.

3.1 Baseline Architecture

Our CMP design is based on in-order processors similar to Piranha [Barroso
et al. 2000], RAW [Taylor et al. 2004], Ultrasparc T1 [Kongetira 2004], and
Xbox360 [Andrews and Backer 2005]. Such CMPs have been shown to be effi-
cient for multimedia, communications, and throughput computing workloads
as they provide high compute density without the area and power overhead
of out-of-order processors [Davis et al. 2005]. We use the Tensilica Xtensa LX,
3-way VLIW core [Jani et al. 2004]. Tensilica cores have been used in several
embedded CMP designs, including the 188-core Cisco Metro router chip [Eather-
ton 2005]. We also performed experiments with a single-issue Xtensa core that
produced similar results for the memory model comparison. The VLIW core is
consistently faster by 1.6x to 2x for the applications we studied. The core has
three slots per instruction, with up to two slots for floating-point operations and
up to one slot for loads and stores. Due to time constraints, we do not use the
Tensilica SIMD extensions at this point. Nevertheless, Section 5.3 includes an
experiment that evaluates the efficiency of each model with processors that pro-
vide higher computational throughput. Each processor has a 16-KByte, 1-way
set-associative instruction cache. The fixed amount of local data storage is used
differently in each memory model.

We explore systems with 1 to 16 cores using a hierarchical interconnect sim-
ilar to that suggested by [Kumar et al. 2005]. We group cores in clusters of four
with a wide, bidirectional bus (local network) providing the necessary intercon-
nect. The cluster structure allows for fast communication between neighboring

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:9

Table II. Parameters for the CMP System
Cache-Coherent Model (CC)

Data 32KB, 2-way associative cache, 32-byte blocks, 1 port
Storage | Hardware stream prefetcher
16 MSHRs

Streaming Model (STR)

Data 24KB local store, 1 port

Storage | 8KB, 2-way associative cache, 32-byte blocks, 1 port
DMA engine with 16 outstanding accesses

Common Parameters
Core 1, 2,4, 8, or 16 Tensilica LX cores, 3-way VLIW, 7-stage
800MHz, 1.6GHz, 3.2GHz, or 6.4GHz clock frequency
2 FPUs, 2 integer units, 1 load/store unit
I-cache 16KB, 2-way associative cache, 32-byte blocks, 1 port

Local Network bidirectional bus, 32 bytes wide, 2 cycle lat. (after arb.)
Global Crossbar | 1input and output port per cluster or L2 bank,
16 bytes wide, 2.5ns latency (pipelined)

L2-cache 512KB, 16-way set associative, 1 port,
2.2ns access latency, non-inclusive
DRAM One memory channel at 1.6GB/s, 3.2GB/s,

6.4GB/s, or 12.8GB/s; 70ns random access latency

For parameters that vary, we denote the default value in bold. Latencies are for a 90nm CMOS
process.

cores. If threads are mapped intelligently, the intracluster bus will handle most
of the core-to-core communication. A global crossbar connects the clusters to the
second-level storage. There is buffering at all interfaces to tolerate arbitration
latencies and ensure efficient bandwidth use at each level. The hierarchical in-
terconnect provides sufficient bandwidth, while avoiding the bottlenecks of long
wires and centralized arbitration [Kumar et al. 2005]. Finally, the secondary
storage communicates to off-chip memory through some number of memory
channels.

Table II presents the parameters of the CMP system. We vary the number of
cores, the core clock frequency, the available off-chip bandwidth, and the degree
of hardware prefetching. We keep the capacity of the first-level data-storage
constant.

3.2 Cache-based Implementation

For the cache-based model, the first-level data storage in each core is organized
as a 32-KB, 2-way set-associative data cache. The second-level cache is a 512-
KB, 16-way set-associative cache. Both caches use a write-back, write-allocate
policy. Coherence is maintained using the MESI write-invalidate protocol. Co-
herence requests are propagated in steps over the hierarchical interconnect.
First, they are broadcast to other processors within the cluster. If the cache-
line is not available or the request cannot be satisfied within one cluster (e.g.,
upgrade request), it is broadcast to all other clusters as well. Snooping re-
quests from other cores occupy the data cache for one cycle, forcing the core to
stall if it tries to do a load/store access in the same cycle. Each core includes a

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:10 o J. Leverich et al.

store-buffer that allows loads to bypass store misses. As a result, the consis-
tency model is weak. Because the processors are in-order, it is easy to provide
sufficient MSHRs for the maximum possible number of concurrent misses.

Each core additionally includes a hardware stream-based prefetch engine
that places data directly in the L1 cache. Modeled after the tagged prefetcher
described in [VanderWiel and Lilja 2000], the prefetcher keeps a history of the
last eight cache misses for identifying sequential accesses, runs a configurable
number of cache lines ahead of the latest cache miss, and tracks four sepa-
rate access streams. Our experiments include hardware prefetching only when
explicitly stated.

We use POSIX threads to manually parallelize and tune applications [Lewis
and Berg 1998]. The applications used are regular and use locks to implement
efficient task-queues and barriers to synchronize SPMD code. Higher-level pro-
gramming models, such as OpenMP, are also applicable to these applications.

3.3 Streaming Implementation

For the streaming model, the first-level data storage in each core is split between
a 24-KB local store and an 8-KB cache. The small cache is used for stack data
and global variables. It is particularly useful for the sequential portions of the
code and helps simplify the programming and compilation of the streaming
portion as well. The 24-KB local store is indexed as a random access memory.
Our implementation also provides hardware support for FIFO accesses to the
local store, but we did not use this feature with any of our applications. Each
core has a DMA engine that supports sequential, strided, and indexed transfers,
as well as command queuing. At any point, each DMA engine may have up to
sixteen 32-byte outstanding accesses. This matches the number of MSHRs we
modeled in our L1 cache controllers.

The local store is effectively smaller than a 24-KB cache because it has no
tag or control bits overhead. We do not raise the size of the local store, since the
small increment (2KB) does not make a difference for our applications. Still, the
energy consumption model accounts correctly for the reduced capacity. The sec-
ondary storage is again organized as a 16-way set-associative cache. L2 caches
are useful with stream processors, as they capture long-term reuse patterns
and avoid expensive accesses to main memory [Sankaralingam 2004; Dally
et al. 2003]. The L2 cache avoids refills on write misses when DMA transfers
overwrite entire lines.

We developed streaming code using a simple library for DMA transfers
within threaded C code. We manually applied the proper blocking transfor-
mation and double-buffering in order to overlap DMA transfers with useful
computation. We also run multiple computational kernels on each data block to
benefit from producer-consumer locality without additional memory accesses or
write-backs for intermediate results. Higher-level stream programming models
should be applicable to most of our applications [Gordon et al. 2002; Fatahalian
et al. 2006]. In some cases, the DMA library uses a scheduling thread that
queues pending transfers. We avoid taking up a whole core for this thread by
multiplexing it with an application thread.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:11

The high-level DMA interface resembles an asynchronous memcpy routine.
The programmer specifies a DMA engine identifier, a source address, a desti-
nation address, and a transfer size. Strided transfers are additionally specified
by a transfer stride and transfer count. Indexed transfers are additionally spec-
ified by a transfer count and an address vector for the source address or des-
tination address, depending on whether the transfer is a scatter or gather.
DMA engine status (i.e., transfer completion) can be queried by decoding a
memory-mapped status register. The low-level DMA interface is implemented
with memory-mapped device control registers. Consequently, it takes only a
few cycles to program a DMA engine and initiate a transfer.

4. METHODOLOGY

4.1 Simulation and Energy Modeling

We used Tensilica’s [2007] modeling tools to construct a CMP simulator for both
memory models. The simulator captures all stall and contention events in the
core pipeline and the memory system. Table II summarizes the major system
characteristics and the parameters we varied for this study. The default values
are shown in bold. The applications were compiled with Tensilica’s optimizing
compiler at the -O3 optimization level. We fast-forward over the initialization
for each application but simulate the rest to completion, excluding 179.art for
which we measure 10 invocations of the train_match function.

We also developed an energy model for the architecture in a 90nm CMOS pro-
cess (1.0V power supply). For the cores, the model combines usage statistics (in-
struction mix, functional unit utilization, stalls and idle cycles, etc.) with energy
data from the layout of actual Tensilica designs at 600MHz in 90nm. The energy
consumed by on-chip memory structures is calculated using CACTI 4.1 [Tarjan
et al. 2006], which includes a leakage power model and improved circuit models
compared to CACTI 3. Interconnect energy is calculated based on our measured
activity statistics and scaled power measurements from [Ho et al. 2003]. The
energy consumption for off-chip DRAM is derived from DRAMsim [Wang et al.
2005]. We model the effect of leakage and clock gating on energy at all levels of
the model.

4.2 Applications

Table III presents the set of applications used for this study. They represent
applications from the multimedia, graphics, physical simulation, DSP, and data
management domains. Such applications have been used to evaluate and mo-
tivate the development of streaming architectures. MPEG-2, H.264, Raytracer,
JPEG, and Stereo Depth Extraction are compute-intensive applications and
show exceptionally good cache performance despite their large datasets. They
exhibit good spatial or temporal locality and have enough computation per data
element to amortize the penalty for any misses. FEM is a scientific application,
but has about the same compute intensity as multimedia applications. The re-
maining applications—Bitonic Sort, Merge Sort, FIR, and 179.art—perform a

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:12 o J. Leverich et al.

Table III. Memory Characteristics of the Applications Measured on the Cache-based
Model Using 16 Cores Running at 800MHz

| Application | Input Dataset
MPEG-2 Encoder [MPEG Software Simulation 10 CIF frames (Foreman sequence)
Group |
H.264 Encoder [ITU-T Rec. H.264] 10 CIF frames (Foreman sequence)
KD-tree Raytracer [Havran 2002] Glassner scene, 16371 triangles, 128x128
rays

JPEG Encoder [Independent JPEG Group 1998] 128 PPMs of various sizes

JPEG Decoder [Independent JPEG Group 1998] 128 JPGs of various sizes

Stereo Depth Extraction 3 CIF image pairs
2D Finite Element Method (FEM) 5006 cell mesh, 7663 edges
Finite Impulse Response filter (FIR) 220 32-bit samples
CFP2000 179.art (image recognition) SPEC reference dataset
Bitonic Sort 219 32-bit keys (2 MB)
Merge Sort 219 32-bit keys (2 MB)

L1 D-Miss | L2 D-Miss | Instr. per | Cycles per
Application Rate Rate L1 D-Miss | L2 D-Miss | Off-chip B/W
MPEG-2 Encoder 0.58% 85.3% 324.8 135.4 292.4 MB/s
H.264 Encoder 0.06% 30.8% 3705.5 4225.9 10.8 MB/s
KD-tree Raytracer 1.06% 98.9% 256.3 654.6 45.1 MB/s
JPEG Encoder 0.40% 72.9% 577.1 84.2 402.2 MB/s
JPEG Decoder 0.58% 76.2% 352.9 44.9 1059.2 MB/s
Stereo Depth Extraction 0.03% 46.1% 8662.5 3995.3 11.4 MB/s
2D FEM 0.60% 86.2% 368.8 55.5 587.9 MB/s
FIR filter 0.63% 99.8% 214.6 20.4 1839.1 MB/s
179.art 1.79% 7.4% 150.1 230.9 227.7 MB/s
Bitonic Sort 2.22% 98.2% 140.9 26.1 1594.2 MB/s
Merge Sort 3.98% 99.7% 71.1 33.7 1167.8 MB/s

relatively small computation on each input element. They require considerably
higher off-chip bandwidth and are sensitive to memory latency.

We manually optimized both versions of each application to eliminate bot-
tlenecks and schedule its parallelism in the best possible way. Whenever
appropriate, we applied the same data-locality optimizations (i.e., blocking,
producer-consumer) to both models. In Section 6, we explore the impact of
data-locality optimizations. The following is a brief description of how each
application was parallelized.

MPEG-2 and H.264 are parallelized at the macroblock level. Both dynam-
ically assign macroblocks to cores using a task queue. Macroblocks within a
single frame are entirely data-parallel in MPEG-2. In H.264, we schedule the
processing of dependent macroblocks so as to minimize the length of the criti-
cal execution path, similar to [Chen et al. 2006]. With the CIF resolution video
frames we encode for this study, the macroblock parallelism available in H.264
is limited. Stereo Depth Extraction is parallelized by dividing input frames into
32x32 blocks and statically assigning them to processors.

KD-tree Raytracer is parallelized across camera rays. We assign rays to pro-
cessors in chunks to improve locality. Our streaming version reads the KD-tree

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors o 12:13

from the cache instead of streaming it with a DMA controller. JPEG Encode
and JPEG Decode are parallelized across input images, in a manner similar
to that done by an image thumbnail browser. Note that Encode reads a lot of
data but outputs little; Decode behaves in the opposite way. The Finite Element
Method (FEM) is parallelized across mesh cells. The FIR filter has 16 taps and
is parallelized across long strips of samples. 179.art is parallelized across F1
neurons; this application is composed of several data-parallel vector operations
and reductions between which we place barriers.

Merge Sort and Bitonic Sort are parallelized across subarrays of a large
input array. The processors first sort chunks of 4,096 keys in parallel using
quicksort. Then, sorted chunks are merged or sorted until the full array is
sorted. Merge Sort gradually reduces in parallelism as it progress, whereas
Bitonic Sort retains full parallelism for its duration. Merge Sort alternates
writing output sublists to two buffer arrays, while Bitonic Sort operates on the
list in situ.

5. EVALUATION

Our evaluation starts with a comparison of the streaming system to the baseline
cache-based system without prefetching or other enhancements (Sections 5.1
and 5.2). We then study the bandwidth consumption and latency tolerance
of the two systems (Section 5.3), and continue by evaluating means to enhance
the performance of caching systems (Sections 5.4 and 5.5). Finally, we consider
the impact of secondary storage in Section 5.6.

5.1 Performance Comparison

Figure 2 presents the execution time for the coherent cache-based (CC) and
streaming (STR) models as we vary the number of 800MHz cores from 2 to 16.
We normalize to the execution time of the sequential run with the cache-based
system. The components of execution time are: useful execution (including fetch
and nonmemory pipeline stalls), synchronization (lock, barrier, wait for DMA),
and stalls for data (caches). Lower bars are better. The cache-based results
assume no hardware prefetching.

For 7 out of 11 applications (MPEG-2, H.264, Depth, Raytracing, FEM, JPEG
Encode, and Decode), the two models perform almost identically for all processor
counts. These programs perform a significant computation on each data element
fetched and can be classified as compute-bound. Both caches and local stores
capture their locality patterns equally well.

The remaining applications (179.art, FIR, Merge Sort, and Bitonic Sort) are
data-bound and reveal some interesting differences between the two models.
The cache-based versions stall regularly due to cache misses. Our streaming ex-
periments eliminate many of these stalls using double-buffering (macroscopic
prefetching). This is not the case for Bitonic Sort, because off-chip bandwidth is
saturated at high processor counts. Bitonic Sort is an in-place sorting algorithm,
and it is often the case that sublists are moderately in-order and elements do not
need to be swapped, and consequently do not need to be written back. The cache-
based system naturally discovers this behavior, while the streaming memory

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:14 o J. Leverich et al.

MPEG-2 Encoder H.264 Encoder Ray Tracer
0.60 060
@ store
Load
2050 - B E"si’gf 2 050 =
= H Usetu| £
R 1 e O A e £ 040
El El
Fl 3
E 030 [R ey & 030
9 9
g 2
2020 - - 2 020
£ £
Z 010+ RS -4 Z 010
0.00 = T = 0.00 = =
UM U Lg L UM U Lg UM UM gE gE ug
ol SE CE ok ol SE CE of < e CE OEF
@ @ @ % @ @ @ @ @ z z z
2CPUs 4CPUs 8CPUs 16 CPUs 2CPUs 4CPUs 8CPUs 16CPUs 2CPUs 4CPUs 8CPUs 16CPUs
JPEG Encoder JPEG Decoder Depth Extraction

0.50 o

o —
F N S
Eoap--- 7
E
E 5=
LTy - § —————
w0 N =
- S =
8§ oo boeeee SIS R S S
E 0.20 % §§
g N NN - £ g
2 010 e """""""" 7 """" """" 10 [--------------
0.00 SN 0.00 SS: = 0.00 =k == ‘ =
gE SE gE oF YE gE sE oE gE BE oE GE
2CPUs 4CPUs 8CPUs 16CPUs 2CPUs 4CPUs 8CPUs 16CPUs 2CPUs 4CPUs 8CPUs 16CPUs
FEM FIR 1791
060
,,
'é Ensu
§ ;mu
3 Fi
g £ 030
3 2
3 2 o
z 2 0.0
S5
R U o U 9] 0.00 i i G o G o G o G o
S A A 7 £ £ cg o©f cf cf
2CPUs 4CPUs 8CPUs 16CPUs PUs 4 CPUs 2CPUs 4CPUs 8CPUs 16CPUs
Bitonic Sort Merge Sorl
o0 M Sstwre
E gosof I. Et’;‘y:i‘-
£ = E Uscful
£ - £ ow o
g S 3 <
& -- £ 020
] N E S=
e e 5
z B < s 200 ------
SHS: S= oo SN RN Ss
Ux Ue Ux U C# uX LWE g
c% ©f ©YE G©Ef ci o Sf c©f
E Z Z Z i i Z Z
2CPUs 4CPUs BCPUs 16CPUs 2CPUs 4CPUs BCPUs 16CPUs

Fig. 2. Execution times for the two memory models as the number of cores is increased, normalized
to a single caching core.

system writes the unmodified data back to main memory anyway. H.264 and
Merge Sort have synchronization stalls with both models due to limited paral-
lelism.

There are subtle differences in the useful cycles of some applications. FIR
executes 14% more instructions in the streaming model than the caching model
because of the management of DMA transfers (128 elements per transfer). In
the streaming Merge Sort, the inner loop executes extra comparisons to check
if an output buffer is full and needs to be drained to main memory, whereas
the cache-based variant freely writes data sequentially. Even though double-
buffering eliminates all data stalls, the application runs longer because of
its higher instruction count. The streaming H.264 takes advantage of some
boundary-condition optimizations that proved difficult in the cache-based vari-
ant. This resulted in a slight reduction in instruction count when streaming.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:15

MPEG—2 Encoder FEM

b
<3

b
S

._
=]
S

=3

=3

IS4
%
S
I
%
S

o
e
=3

Normalized Off-Chip Traffic
o
(=)
o
<
.
(=3

Normalized Off—Chip Traffic
(=1
(=)
o

0.00 0.00
[SR O~ |G- [SR O [ON- [ON- O
[[ON = [[U K O = O = U K
» » »n » »n n n »n
2CPUs 4CPUs 8CPUs 16CPUs 2CPUs 4CPUs 8CPUs 16CPUs
FIR Bitonic Sort
1.20
1.40
£ 1.00 2
g ! £ 120
& e
a
£ 0.80 ;;9" 1.00
c c
e w 0.80
“o-' 0.60 i
9 2 0.60
& 040 8
< <
.4
g g 0.40
z 0.20 Z 020
0.00 0.00
© 5 C 2 © 5 C 2 © &% © &% © & %
2CPUs 4CPUs 8CPUs 16 CPUs 2CPUs 4CPUs 8CPUs 16CPUs

Fig. 3. Off-chip traffic for the two memory models as the numbers of cores is increased, normalized
to a single caching core.

MPEG-2 suffers a moderate number of instruction cache misses due the cache’s
limited size.

Overall, Figure 2 shows that neither model has a consistent perfor-
mance advantage. Even without prefetching, the cache-based model performs
similarly to the streaming one, and sometimes it is actually faster (Bitonic Sort
for 16 cores). Both models use data efficiently, and the fundamental parallelism
available in these applications is not affected by how data are moved. Although
the differences in performance are small, there is a larger variation in off-chip
bandwidth utilization of the two models. This accounts for the slowdown of
the streaming Bitonic Sort with 16 cores. Figure 3 shows that each model has
an advantage in some situations. We explore bandwidth more thoroughly in
Section 5.4.

5.2 Energy Comparison

Figure 4 presents energy consumption for the two models running FEM, MPEG-
2, FIR, and Bitonic Sort. We normalize to the energy consumption of a single
caching core for each application. Each bar indicates the energy consumed
by the cores, the caches and local stores, the on-chip network, the second-
level cache, and the main memory. The numbers include both static and dy-
namic power. Lower bars are better. In contrast to performance scaling, energy

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

J. Leverich et al.

12:16

H.264 Encoder

MPEG-2 Encoder

Ray Tracer

r/ ////////A Al
MNNES]

VA ,Vu

nsu0)) &1 pozifewIoN

U wis
EATTNNIINY 2o

Ry
-7//4'/////////8

| V/////////// IS
| BRI 00

)
3
S

0.80
0.70
0.60 [~
0.50
0.40

< S s S <

uondumsuop ABsoug pazipetion

4CPUs 8CPUs 16CPUs

CPUs

5

4CPUs 8CPUs 16CPUs

CPUs

5

4 CPUS 8CPUs 16 CPUS

2CPUs

Depth Extraction

JPEG Decoder

JPEG Encoder

IO s
ANNNWER

w//ﬂ//ﬂ//ﬂﬂ s
?ﬁﬁ/ﬁ//// %

/////////////// ALS
AN

V//ﬁ//ﬁ//¢¢4 ALS
?ﬁf.ﬂ////ﬂ4 o0

X EE
8 8 23 8 28 28
S s s dsd3SSsS
wondunsuoyy AR1oust pozifewsioN

‘\\\%7//////2

V////.///A 0

7,////.///4 ALS
Ay oo

Wil
VY

Vé/&

4CPL’5 B(,‘PUS 16 CPUs

2 CPUs

4CPUs 8CPUs 16CPUs

2 CPUs

179.an

FIR

&Zé i
AR

0.70 [
0.60 [~

)
2
s

wondwnsuo) AF1auz pazfeuLION

\\\\

r////////// us
\- ,///// // o

\\\\

wonduinsuo) AF1auzp pazijeuLIoN

4CPUs 8CPUs 16 CPUS

2 CPUs

FEM

\\§
Vi

0.80

EEEEEEE
E g% 5 &8 =
s 3 e 38 ¢3S s
ondumsuo)y ARiaug pazifeutioN

I
T 20

0.00

8CPUs 16CPUs

4CPUs

CPUs

2

8CPUs 16CPUs

4CPUs

CPUs

2

4CPUs 8CPUs 16 CPUs

2 CPUs

Merge Sort

Bitonic Sort

DRAM
] Network
B LMem
O D-$
B s

Core

W 2§

N
=

I VZ wis

0.00

R

88888RFIIF{E

“33dS3Sssee
> B1ouzy

erens

wondumsuo;

pazifewIoN

x._.m

8 CPUs 16 CPUs

8CPUs 16 CPUs

4 CPL's

2CPUs

4CPUS

2CPUs

Energy consumption for the two memory models as the number of cores is increased,

Fig. 4.

normalized to a single caching core.

the amount of

sice

ith more cores,

consumption does not always improve w
hardware used to run the application increases.

JPEG Decode, FIR,
istently consumes less energy than

b

tions (JPEG Encode

ica
and Merge Sort), stream

For 5 out of 11 appl

179

ing cons

art,

in nearly every

1

1a

The energy different

to 25%

typically 10%

coherence,

cache

case comes from the DRAM system. This can be observed in the correlation be-

tween Figures 3 and 4. Specifically,
fer fewer bytes from main memory,

refills for output

wh

typically trans-

10ns

the streaming applicat

f superfluous

ion o

t

ma

1m

often through the el

ith main memory than the caching

is true for our streaming Bitonic Sort,
ified data. For applications where there

The opposite

-only data
ich tends to communicate more data w

te-back of unmod

due to the wri
ittle bandw

version

dth difference between the two models (such as FEM) or the

i

1

computationa
consumpt

18

in energy

igh (such as Depth), the difference

h

tensity is very

in

1

ificant.

101 1S 1INSign

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

VT

[t
I STR
ce

=
[=}
£ STR

6.4G

2
a3

Fig. 5. Normalized execution time as the computation rate of processor cores is increased (16
cores).

We expected to see a greater difference between the local store and L1 data
cache, but it never materialized. Since our applications are data-parallel and
rarely share data, the energy cost of an average cache miss is dominated by the
off-chip DRAM access rather than the modest tag broadcast and lookup. Hence,
the peraccess energy savings by eliminating tag lookups in the streaming sys-
tem made little impact on the total energy footprint of the system.

5.3 Increased Computational Throughput

Up to now, the results assume 800MHz cores, which are reasonable for em-
bedded CMPs for consumer applications. To explore the efficiency of the two
memory models as the computational throughput of the processor is increased,
we vary the clock frequency of the cores while keeping constant the bandwidth
and latency in the on-chip networks, L2 cache, and off-chip memory. In some
sense, the higher clock frequencies tell us in general what would happen with
more powerful processors that use SIMD units, out-of-order schemes, higher
clock frequency, or a combination. For example, the 6.4GHz configuration can
be representative of the performance of an 800MHz processor that uses 4- to
8-wide SIMD instructions. The experiment was performed with 16 cores to
stress scaling and increase the system’s sensitivity to both memory latency and
memory bandwidth.

Applications with significant data reuse, such as H.264 and Depth, show
no sensitivity to this experiment and perform equally well on both systems.
Figure 5 shows the results for some of the applications that are affected by com-
putational scaling. These applications fall into one of two categories: bandwidth-
sensitive or latency-sensitive. Latency-sensitive programs, like MPEG-2 Encod-
ing, perform a relative large degree of computation between off-chip memory
accesses (hundreds of instructions). While the higher core frequency shortens
these computations, it does not reduce the amount of time (in nanoseconds, not
cycles) required to fetch the data in between computations. The macroscopic
prefetching in the streaming system can tolerate a significant percentage of the
memory latency. Hence, at 6.4GHz, the streaming MPEG-2 Encoder is 9% faster.

Bandwidth-sensitive applications, such as FIR and Bitonic Sort, eventually
saturate the available off-chip bandwidth. Beyond that point, further increases
in computational throughput do not improve overall performance. For FIR, the
cache-based system saturates before the streaming system due to the super-
fluous refills on store misses to output-only data. At the highest computational

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:18 o J. Leverich et al.

0.08 —

Bl Store
o 007 | oo [J- Load -
g O Sync
: [ULVCN it N " Useful]
S
E 005 | [t
2
5004 o | e
o
L0031 IR I i
]
£ 002 - T R I S I R
z S
001 —---- R - S ORI
\\
=
0.00
O O O O
O =

1.6GB/s 3.2GB/s 6.4GB/s 12.8GB/s

Fig. 6. The effect of increased off-chip bandwidth on FIR performance. Measured on 16 cores at
3.2GHz.

throughput, the streaming system performs 36% faster. For Bitonic Sort, the
streaming version saturates first, because it performs more writes than the
cache-based version (as described in Section 5.1). This gives the cache-based
version a 19% performance advantage.

5.4 Mitigating Latency and Bandwidth Issues

The previous section indicates that when a large number of cores with high
computational throughput are used, the cache-based model faces latency and
bandwidth issues with certain applications. To characterize these inefficiencies,
we performed experiments with increased off-chip bandwidth and hardware
prefetching.

Figure 6 shows the impact of increasing the available off-chip bandwidth
for FIR. This can be achieved by using higher frequency DRAM (e.g., DDR2,
DDR3, XDR) or multiple memory channels. With more bandwidth available, the
effect of superfluous refills is significantly reduced, and the cache-based system
performs nearly as well as the streaming one. When hardware prefetching is
introduced at 12.8GB/s, load stalls are reduced to 3% of the total execution time.
However, the additional off-chip bandwidth does not close the energy gap for
this application. An energy-efficient solution for the cache-based system is to
use a nonallocating write policy, which we explore in Section 5.5.

For Merge Sort and 179.art (Figure 7), hardware prefetching significantly
improves the latency tolerance of the cache-based systems; data stalls are vir-
tually eliminated. This is not to say that we never observed data stalls—at 16
cores, the cache-based Merge Sort saturates the memory channel due to super-
fluous refills—but that a small degree of prefetching is sufficient to hide over
200 cycles of memory latency.

5.5 Mitigating Superfluous Refills

For some applications, the cache-based system uses more off-chip bandwidth
(and consequently energy) because of superfluous refills for output-only data.
This disadvantage can be addressed by using a non-write-allocate policy for

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors o 12:19

Merge Sort 179.art
0.60 B s 0.50 -
tore] Store
2 050 - I S 0. Load | g 045
e O Sync = 040 oo
5 040 b e & Useful | 5035~
- NS 2 030
| 23
4 030 - §§ ------------------------ G025 SSSEE R
3 RS B 020 - RO [
S 020 NN T RERRRRREREE S N
5 SSSISS HRN S SSESSSH R
Sork - Y Y RS Pl NN SN L
' N NS | % o005 NN N
RS SSESSSESS oI S SSESSSES
O 9] 9] O O o
O O O O o O
08GHz 1.6GHz 3.2GHz 08GHz 16GHz 32GHz

Fig. 7. The effect of hardware prefetching on performance. P4 refers to a prefetch depth of 4.
Measured on two cores at the indicated clock rate with a 12.8GB/s memory channel.

Off-Chip Traffic with PFS Energy Consumption with PFS
1 Gwae] gl]
% 1.00 g 0:80 ------------------ § ------------------------
& 3 S N
£ 0.80 g 070 - §\\\ """" § """"""""""
s | NN IR N)
O 0.60 -~ R
L = S X
£ 060 5 050 - N IR
3 5040 [S %
g 040 Bo30f- S N
E 020 T 020 - -
e E olol---- = -
Z S 0.10 Z é
T e e ves T geE e st
Fo oo o o o ¥
O O O O O O
] &) &) &) &) &)
FIR Merge Sort MPEG—2 FIR Merge Sort MPEG—2

Fig. 8. The effect of “Prepare for Store” (PFS) instructions on the off-chip traffic and energy con-
sumption for the cache-based system, normalized to a single caching core. Measured with 16 cores
at 800MHz.

output-only data streams. We mimic nonallocating stores by using an instruc-
tion similar to the MIPS32 “Prepare for Store” (PFS) instruction [MIPS32 2001].
PFS allocates and validates a cache line without refilling it, and, it is fully co-
herent. The results for FIR, Mergesort, and MPEG-2 are shown in Figure 8.
For each application, the elimination of superfluous refills brings the memory
traffic and energy consumption of the cache-based model into parity with the
streaming model. For MPEG-2, the memory traffic, due to write misses, was
reduced 56% compared to the cache-based application without PFS.

Note that a full hardware implementation of a non-write-allocate cache pol-
icy, along with the necessary write-gathering buffer, might perform better than
PFS, as it would also eliminate cache replacements due to output-only data.

5.6 The Importance of Secondary Caches

Figure 9 studies the sensitivity of the two models to the capacity of the L2
cache. The L2 cache has little impact on performance for both models as the
critical working sets of the applications tend to either easily fit in the L1 cache
or not fit in even the L2 cache. On the other hand, we noticed increases in the

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:20 o J. Leverich et al.

MPEG-2 Encoder FEM

6.00 0 write 1.60

Wl Read O 140 -

120 [om e e
100 [e s se e s e

0.80

0.60

Normalized Off-Chip Traffic
(58]
f=1
(=

Normalized Off-Chip Traffi

040 [] - - - -
100 777777777777777777777777777777 020 ,,,,,
0.00
O O O U
S = S = S = S =
w1 w1 w1 w1
512K 0K 512K 0K

Fig.9. Off-chip accesses with and without an L2 cache for MPEG-2 and FEM (16 cores), normalized
to a single caching core with L2 enabled. No prefetching.

energy consumption of the two models when we eliminated the L2 completely
for MPEG-2 and H.264. For these applications, the multiple cores operate on
overlapping regions of nearby macroblocks. Hence, there is spatial locality in
data accesses captured by the L2 for both models. When the L2 is eliminated,
the cache-based model captures some of this locality in the L1 caches. With
the streaming model, all accesses go to off-chip memory. FEM, which exhibits
redundant gathers on nearby mesh cells, also shows an increase in off-chip
accesses when the L2 is eliminated, where as the cache-based model keeps
redundant references local.

In our experiments, these redundant accesses had little impact on perfor-
mance. On the other hand, any reduction in off-chip traffic will improve energy
efficiency. It is possible for streaming architectures to overcome these ineffi-
ciencies at the cost of programmer or compiler effort. For example, redundant
fetches can be mitigated by the repositioning of data within the local store,
increasing address generation complexity, or by sorting indexed gather indices
to more easily identify redundant addresses. Many such techniques are thor-
oughly evaluated in the context of scientific applications on streaming memory
systems in [Erez et al. 2007]. The presence of an L2 cache can mitigate this
effort.

5.7 Summary

This section has presented the performance, bandwidth consumption, and en-
ergy consumption of cache-based and streaming memory systems on CMPs of
up to 16 cores. For most applications, the streaming and cache-based mem-
ory systems perform and scale equally well. For applications with significant
disparities between memory systems, the application of prefetching and data
locality management eliminates the difference.

6. STREAMING AS A PROGRAMMING MODEL

Our evaluation shows that the two memory models lead to similar performance
and scaling. It is important to remember that we took advantage of streaming
optimizations, such as blocking and locality-aware scheduling, on both memory

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:21

MPEG-2 Encoder MPEG-2 Encoder

060 [l Store o L] wite
2 050 oo = S IREREREEERTERTRRRE, . Load | % 1607
= ~ [Sync S 140 -
: :t:% U);eful :_
S04 RN T £ 120
3 §\ o
3 NN T 1.00
2 N SN PO &
Z 030 SN S 080 |-
3 SS 3,
2020 - %§ rrrrrrrrrrrrrrrrrrrrrrr N 0.60 -
e §§ 5
£ SN £ 040 |-
S NS NN B N o P 5
z 010 N 7020
S8 ‘
0.00 P o 0.00
2“5 ©%
o
2 CPUs CPUs

Fig. 10. The effect of stream programming optimizations on the performance and off-chip band-
width of MPEG-2 at 800MHz.

models. To illustrate this, it is educational to look at stream programming and
its implications for CMP architecture.

6.1 Streaming on Cache-based Systems

Stream programming models encourage programmers to think about the local-
ity, data movement, and storage capacity issues in their applications [Gordon
et al. 2002; Fatahalian et al. 2006]. Although they do not necessarily require
the programmer to manage these issues, the programmer structures the appli-
cation in such a way that it is easy to reason about them. This exposed nature of
a stream program is vitally important for streaming architectures, as it enables
software or compiler management of data locality and asynchronous commu-
nication with architecturally visible on-chip memories. Despite its affinity for
stream architectures, we find that stream programming is beneficial for cache-
based architectures as well.

Figure 10 shows the importance of streaming optimizations in the cache-
based MPEG-2 Encoder. The original parallel code from [Li et al. 2005] per-
forms an application kernel on a whole video frame before the next kernel is
invoked (i.e., Motion Estimation, DCT, Quantization). We restructured this code
by hoisting the inner loops of several tasks into a single outer loop that calls
each task in turn. In the optimized version, we execute all tasks on a block of a
frame before moving to the next block. This also allowed us to condense a large
temporary array into a small stack variable. The improved producer-consumer
locality reduced write-backs from L1 caches by 60%. Data stalls are reduced by
41% at 6.4GHz, even without prefetching. Furthermore, improving the paral-
lel efficiency of the application became a simple matter of scheduling a single
data-parallel loop, which alone is responsible for a 40% performance improve-
ment at 16 cores. However, instruction cache misses are notably increased in
the streaming-optimized code.

For 179.art, we reorganized the main data structure in the cache-based ver-
sion in the same way as we did for the streaming code. We were also able to
replace several large temporary vectors with scalar values by merging several

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:22 o J. Leverich et al.

179.art 179.art
3.50 — B sore 16.00 [Write
g 300 -] e E Load -—{ % 14.00 ==~ [l W Read—
= Sync = [N U A
: 250 | ---q e - Useful ;_ 12.00
S £ 10,00 [e[
5 200 T
5 ol 5 8.00
e T 600 ol
2 100 2 oMW
Z 050" Z 200k BB
N
000 Eum VUK VU ou:lz 0.00 LUK VLU DL VU
=0 ZOe =ZOE & S0 SO0t =Z0OE =ZO0O&
I~ & I~] I~] ™~ ™~
2CPUs 4CPUs 8CPUs 16CPUs 2CPUs 4CPUs 8CPUs 16CPUs

Fig. 11. The effect of stream programming optimizations on the performance and off-chip band-
width of 179.art at 800MHz.

loops. These optimizations reduced the sparseness of 179.art’s memory access
pattern, improved both temporal and spatial locality, and allowed us to use
prefetching effectively. As shown in Figure 11, the impact on performance is
dramatic, even at small core counts (7x speedup). We discuss the optimizations
for 179.art further in Section 6.2.

Overall, we observed performance, bandwidth, and energy benefits whenever
stream programming optimizations were applied to our cache-based applica-
tions. This is not a novel result, since it is well known that locality optimiza-
tions, such as blocking and loop fusion [Lim et al. 2001], increase computational
intensity and cache efficiency. However, stream programming models encour-
age users to write code that explicitly exposes an application’s parallelism and
data-access pattern, more often allowing such optimizations.

Our experience is that that stream programming is actually easier with the
cache-based model rather than the streaming model. With streaming memory,
the programmer or the compiler must orchestrate all data movement and posi-
tioning exactly right in order for the program to operate correctly and fast. This
can be burdensome for irregular access patterns (overlapping blocks, search
structures, unpredictable or data-dependent patterns, etc.), or for accesses that
do not affect an application’s performance. It can lead to additional instruc-
tions and memory references that reduce or eliminate streaming hardware’s
other advantages. With cache-based hardware, stream programming is just an
issue of performance optimization. Even if the algorithm is not blocked exactly
right, the caches will provide best-effort locality and communication manage-
ment. Hence, the programmer or the compiler can focus on the most promising
and most regular data structures instead of managing all data structures in a
program.

Moreover, stream programming can address some of the coherence and
consistency challenges when scaling cache-based CMPs to large numbers
of cores. Since a streaming application typically operates in a data-parallel
fashion on a sequence of data, there is little short-term communication or
synchronization between processors. Communication is only necessary when

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:23

_Before After

- ~

’ 4 L, ~4A
/
/ 1 U / 1 U
/ /
/ wLoop / wLoop
/ |
/ W tnorm | P U tnom
/ |
, |
| |
| Q X ; TDS P U tnorm
| |
, [
|
I' V tnorm | tresult p U BUS
[| Lo
yLooj
\
‘l p u TDS \ y
\
l‘ T
I tresult ttemp p BUS
\ o N\, Y
| I qLoop || yLoop | OPT1: Reorder IUWXVPQ
\ v v vector to IIIIIUUUUU...
\ Q y OPT2: Fuse loops
\ , OPT3: Proactively evict
N . TDS and BUS

Fig. 12. Inner loop sequence of train_match() in 179.art before and after streaming optimizations
(producer-consumer). Vectors are labeled with capital letters and scalar values with lowercase
letters. BUS and TDS are matrices that are more than 10x larger than each vector.

processors move from one independent set of input/output blocks to the next
or reach a cycle in an application’s data-flow graph. This observation may
be increasingly important as CMPs grow, as it implies that less aggressive,
coarser-grain, or lower-frequency mechanisms can be employed to keep caches
coherent.

6.2 Application Study: 179.art

To illustrate the benefits from stream programming for cache-based systems,
we will discuss in detail some of the optimizations for 179.art, a neural network
simulator which is used to recognize objects in a thermal image. The application
consists of two parts: training of the neural network and recognition of learned
images. Both parts are very similar, as they do data-parallel vector operations
followed by reductions.

The left side of Figure 12 shows the sequence of inner loops (vector opera-
tions) of the train match() function and its outer loop. For example, wLoop it-
erates over elements of the I and U vectors and produces a vector W and a scalar
tnorm, the result of a local reduction calculation, which must be shared between

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:24 o J. Leverich et al.

179.art 179.art
34 1.7 1.0 16.0 16.0 16.0 42
0.60
[Store o
2 IS) o RS () 0. Load | &
E 0.50 O Sync E
= Useful a
o404 | [[|Ff 2
=
~
2] |
3 N &
G030 L 5
) N =
S 020 - S
FRG N~ s <
E S S E
2 010 - N 1S 2
N N
N N S
0.00 o PPy
z ZEEE X
o o000 ©
2 4CPUs 8

Fig. 13. The effect of stream programming optimizations the cache-based 179.art’s performance
and off-chip traffic. Measured at 800MHz.

processors. The original sequential version of this benchmark exhibits very low
cache locality (35% L1 miss rate). This is because the main data structure of
the application (f1_layer, is an array of structures which groups elements of
vectors I, U, W, X, V, P, and Q together. Hence, consecutive elements of the same
vector are not adjacent in memory.

To write 179.art as a stream program, we implemented the following op-
timizations. First, we restructured f1 layer so that consecutive elements of
each vector are in sequential memory locations (OPT1). This dramatically im-
proved spatial locality and reduced the L1 miss rate of the cache-based ver-
sion to 10%. Second, we fused loops as shown in the right side of Figure 12,
which eliminated several temporary vectors (OPT2). For example, after merg-
ing xLoop and vLoop into xvLoop, X becomes local to xvLoop and does not need
to be written into memory. OPT2 embodies producer-consumer locality. This
optimization does not necessarily improve performance but significantly re-
duces off-chip traffic and cache miss rate for cache-based systems. The last
optimization (OPT3) was to carefully allocate and manage first-level storage
for frequently used data. As the number of processors increases, a larger por-
tion of the active working set can be held in first-level storage. To achieve
this optimization on the cache-based system, we used a cache-control instruc-
tion to flush data that had little temporal locality. Figure 13 shows the im-
pact of these optimizations on the performance, off-chip traffic, and energy
consumption of the cache-based model. OPT1 leads to dramatic performance
improvements across all processor counts. OPT2 and OPT3 do not affect per-
formance significantly but reduce off-chip bandwidth requirements and energy
consumption.

Figure 14 shows the difference in off-chip traffic between the cache-based
versions and the optimized streaming version with the L2 cache enabled and
disabled. OPT2 uses substantially more off-chip bandwidth than the streaming
version because of cache conflicts. The introduction of invalidation hints in
OPT3 reduces, but does not entirely eliminate, the disparity in both L2 cache
scenarios.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:25

512KB L2 Cache No L2 Cache
179 art 179.art
2.00 ST 3.50
g 180 3.00 -+
T 160 -
o140 e 250 =
71
S ten .. S 150
T 0.80
Z 060 [S 1.00 -
£ 040 |- £
Z 020 030 7
0.00 0.00

Fig. 14. Off-chip traffic of 179.art with 512KB L2 cache enabled and disabled. The difference in
storage efficiency between the cache-based and streaming memory systems is most pronounced in
the L2 cache.

7. DISCUSSION AND LIMITATIONS

It is important to recognize that our study has limitations. Our experiments fo-
cus on CMPs with 1 to 16 cores and uniform memory access. Some of the conclu-
sions may not generalize to larger-scale CMPs with nonuniform memory access
(NUMA). A large-scale, cache-based CMP, programmed in a locality-oblivious
way, will undoubtedly suffer stalls due to long memory delays or excessive on-
chip coherence traffic. We observe that the stream programming model may be
able to addresses both limitations; it exposes the flow of data early enough that
they can be prefetched, and motivates a far coarser-grained, lower-frequency
coherence model.

This study does not address many important differences between stream-
ing and cache-based memory systems. We do not compare the logic complexity
of DMA engines or the load-store units in streaming memory systems to the
cache-controller in cache-based memory systems. We also do not evaluate the ef-
ficiency of DRAM channel scheduling for each model. In general, we focused our
efforts on the locality and programmability issues salient to all CMP systems.

Toward the goal of designing large CMPs that are still easy to program, a
hybrid memory system that combines caching and software-managed mem-
ory concepts can mitigate efficiency challenges without exacerbating the dif-
ficulty of software development. For example, Gummaraju et al. [2007] ex-
tensively studied the addition of a “Stream Load/Store Unit,” which is opti-
mized for generating bulk-transfer requests, to a general-purpose processor.
Conversely, small, potentially incoherent caches in streaming memory systems
could vastly simplify the use of static data structures with abundant temporal
locality.

Other than the limits of scalability, we did not consider architectures that
expose the streaming model all the way to the register file [Taylor et al. 2004]
or applications without abundant data parallelism. We also did not consider
changes to the pipeline of our cores, since that is precisely what makes it difficult
to evaluate existing streaming memory processors compared to cache-based

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:26 o J. Leverich et al.

processors. Finally, our study was performed using general-purpose CMPs. A
comparison between the two memory models for specialized CMPs remains
an open issue. Despite these limitations, we believe this study’s conclusions
are important in terms of understanding the actual behavior of CMP memory
system and motivating future research and development.

8. RELATED WORK

Several architectures [Ahn et al. 2004; Taylor et al. 2004; Gschwind et al.
2005; Machnicki 2005; Khailany et al. 2008] use streaming hardware with
multimedia and scientific codes to get performance and energy benefits from
software-managed memory hierarchies and regular control flow. There are also
corresponding proposals for stream programming languages and compiler op-
timizations [Gordon et al. 2002; Fatahalian et al. 2006]. Such tools can reduce
the burden on the programmer for explicit locality and communication manage-
ment. In parallel, there are significant efforts to enhance cache-based systems
with traffic filters [Moshovos 2005], replacement hints [Wang et al. 2002], or
prefetching hints [Wang et al. 2003]. These enhancements target the same ac-
cess patterns that streaming memory systems benefit from.

To the best of our knowledge, our prior work was the first direct comparison
of the two memory models for CMP systems under a unified set of assump-
tions [Leverich et al. 2007]. Jayasena [2005] compared a stream register file to
a single-level cache for a SIMD processor. He found that the stream register file
provides performance and bandwidth advantages for applications with signifi-
cant producer-consumer locality. Loghi and Poncino [2005] compared hardware
cache coherence to not caching shared data at all for embedded CMPs with on-
chip main memory. The ALP report [Li et al. 2005] evaluates multimedia codes
on CMPs with streaming support. However, for all but one benchmark, stream-
ing implied the use of enhanced SIMD instructions, not software-managed
memory hierarchies. Suh et al. [2003] compared a streaming SIMD processor, a
streaming CMP chip, a vector design, and a superscalar processor for DSP ker-
nels. However, the four systems varied vastly at all levels; hence, it is difficult to
compare memory models directly. There are several proposals for configurable
or hybrid memory systems [Mai et al. 2000; Sankaralingam 2004; Jayasena
2005; Li et al. 2005]. In such systems, a level in the memory hierarchy can be
configured as a cache or as a local store depending on an application’s needs.
Gummaraju and Rosenblum [2005] have shown benefits from a hybrid archi-
tecture that uses stream programming on a cache-based superscalar design for
scientific code, and later demonstrate a comprehensive framework for dynamic
workload scheduling based on stream programming [Gummaraju et al. 2008].
Our work supports this approach, as we show that cache-based memory systems
can be as efficient as streaming memory systems, but could benefit in terms of
bandwidth consumption and latency tolerance from stream programming.

In some respects, our comparison of streaming and cache-based mem-
ory systems echoes previous comparisons of shared memory to message-
passing [Klaiber and Levy 1994; Culler et al. 1999]. Shared memory, like tradi-
tional caching, couples a conceptually simple programming model with intricate

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:27

hardware. On the other hand, streaming, like message-passing, couples a prag-
matic programming model with conceptually simple hardware.

Although the similarities between streaming and message-passing are com-
pelling for comparison’s sake, there is an important difference to acknowledge.
Message-passing systems typically depend on a traditional cache-hierarchy for
each core’s communication with its own secondary memory. Cores in a stream-
ing memory systems rely on bulk transfer mechanisms to communicate with
its own secondary memory. Consequently, code for streaming memory sys-
tems requires software data management that far exceeds the amount done
by message-passing systems. Ironically, some contemporary streaming memory
architectures [Gschwind et al. 2005; Ahn et al. 2004] are built with a single,
shared uniform-access main memory.

There have been several studies discussing the integration of shared mem-
ory and message passing in the same system [Heinlein et al. 1994; Kranz et al.
1993]. Philosophically, the integration of prefetching and other streaming mem-
ory mechanisms [Gummaraju et al. 2007] into cache-based memory systems
follows the same pattern.

9. CONCLUSIONS

The choice of the on-chip memory model has far-reaching implications for CMP
systems. In this article, we performed a direct comparison of two competing
models: coherent caches and streaming memory.

We conclude that for the majority of applications on CMPs with up to 16 cores,
both models perform and scale equally well. For some applications without
significant data reuse, streaming has a performance and energy advantage
when we scale the number and computational capabilities of the cores. However,
the efficiency gap can be bridged by introducing prefetching and nonallocating
write policies to cache-coherent systems. We also found some applications for
which streaming scales worse than caching due to the redundancies introduced
to make the code regular enough for streaming.

Through the adoption of stream programming methodologies, which en-
courage blocking, macroscopic prefetching, and locality aware task scheduling,
cache-based systems are equally as efficient as streaming memory systems.
This indicates that there is not a sufficient advantage in building general-
purpose cores that follow a pure streaming model, where all local memory
structures and all data streams are explicitly managed. We also observed that
stream programming is actually easier when targeting cache-based systems
rather than streaming memory systems, and that it may be beneficial in scal-
ing coherence and consistency for caches to larger systems.

ACKNOWLEDGMENTS

We sincerely thank Jung Ho Ahn, Bill Mark, Mattan Erez, and Ron Ho for their
invaluable comments on early versions of this paper. We are also grateful for
the insightful critique of this work by the reviewers. This work was partially
funded by DARPA under contract number F29601-03-2-0117, the FCRP Cen-
ter for Circuit and System Solutions, under contract 2003-CT-888, and NSF

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:28 o J. Leverich et al.

under Career Award No. 0546060. Jacob Leverich is supported by an NVIDIA
Fellowship and a David Cheriton Stanford Graduate Fellowship.

REFERENCES

ADVE, S. V. AND GHARACHORLOO, K. 1996. Shared memory consistency models: A tutorial. IEEE
Computer 29, 12 (Dec.), 66—76.

AcarwaL, V., HrisHIKESH, M. S., KECKLER, S. W., AND BURGER, D. 2000. Clock rate versus IPC: the
end of the road for conventional microarchitectures. In Proceedings of the 27th International
Symposium Computer Architecture.

AmnN, J. et al. 2004. Evaluating the imagine stream architecture. In Proceedings of the 31st In-
ternational Symposium Computer Architecture.

ANDREWS, J. AND BACKER, N. 2005. Xbox360 system architecture. In Conference Record of Hot
Chips 17. Stanford, CA.

Barroso, L. A.etal. 2000. Piranha: A scalable architecture based on single-chip multiprocessing.
In Proceedings of the 27th International Symposium on Computer Architecture.

Cuen, Y.-K., L1, E. Q., Zuou, X., AND GE, S. 2006. Implementation of h.264 encoder and decoder
on personal computers. J. Visual Communication and Image Representation 17, 2, 509-532.

CHuruen, T. 1993. A generational algorithm to multiprocessor cache coherence. In International
Conference on Parallel Processing. 20—-24.

CuLLER, D., SiNngH, J. P, anD Gupta, A. 1999. Parallel Computer Architecture: A Hard-
ware/Software Approach. st. Louis: Morgan Kauffman.

Darry, W. et al. 2003. Merrimac: Supercomputing with Streams. In Proceedings of the 2003
Conference on Supercomputing.

Davis, J. D., Laupon, dJ., anD OLukoTuN, K. 2005. Maximizing CMP throughput with mediocre
cores. In Proceedings of the 14th International Conference on Parallel Architectures and Compi-
lation Techniques.

Drake, M., Horrmany, H., RaBBAH, R., AND AMARASINGHE, S. 2006. Mpeg-2 decoding in a stream
programming language. In Proceedings of the 20th IEEE International Parallel & Distributed
Processing Symposium, Rhodes Island (IPDPS).

EataerToN, W. 2005. The push of network processing to the top of the pyramid. Keynote presenta-
tion at the Symposium on Architectures for Networking and Communication Systems, Princeton,
NJ.

Erez, M., AnN, J. H., GuMmMARAJU, J., RosEnBLUM, M., AND Darry, W. J. 2007. Executing irregular
scientific applications on stream architectures. In Proceedings of the 21st Annual International
Conference on Supercomputing. 93—104.

Faranarnian, K., Knicar, T. J., Houston, M. et al. 2006. Sequoia: Programming the memory hier-
archy. In Proceedings of the 2006 ACM /IEEE Conference on Supercomputing.

FoLey, T. AND SUGERMAN, J. 2005. KD-tree acceleration structures for a GPU raytracer. In Pro-
ceedings of the Graphics Hardware Conference

Gorpon, M. I. et al. 2002. A stream compiler for communication-exposed architectures. In Pro-
ceedings of the 10th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems.

Gscawinp, M. et al. 2005. A novel SIMD architecture for the cell heterogeneous chip-
multiprocessor. In Conference Record of Hot Chips 17.

GuMmMARAJU, J., CoBURN, J., TURNER, Y., AND RoseEnBLum, M. 2008. Streamware: programming
general-purpose multicore processors using streams. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating Systems. 297—
307.

GuMmMmARAJU, J., EREZ, M., CoBURN, J., RosENBLUM, M., AND Darry, W. J. 2007. Architectural sup-
port for the stream execution model on general-purpose processors. In Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques. 3—12.

GUMMARAJU, J. AND RosENBLUM, M. 2005. Stream programming on general-purpose processors. In
Proceedings of the 38th International Symposium on Microarchitecture.

Havran, V. 2002. Heuristic ray shooting algorithms. Ph.D. thesis, Czech Technical University in
Prague.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

Comparative Evaluation of Memory Models for Chip Multiprocessors . 12:29

HEemLEWN, J., GHARACHORLOO, K., DRESSER, S., AND GUPTA, A. 1994. Integration of message passing
and shared memory in the stanford flash multiprocessor. SIGOPS Oper. Syst. Rev. 28, 5, 38-50.

Ho, R., Mar1, K., anD Horowitz, M. 2001. The Future of wires. Proceedings of the IEEE 89, 4 (Apr.).

Ho, R., Ma1, K., aAND HorowiTz, M. 2003. Efficient on-chip global interconnects. In Symposium on
VLSI Circuits. 271-274.

Horowitz, M. AND Darry, W. 2004. How scaling will change processor architecture. In Proceedings
of the International Solid-State Circuits Conference. 132—-133.

INDEPENDENT JPEG Group. 1998. IJG’s JPEG Software Release 6b.

ITU-T Rec. H.264. 2002. ISO/IEC 144496-10 AVC. 2002.

Jani, D., Ezer, G., aND KiM, J. 2004. Long words and wide ports: Reinventing the Configurable
Processor. In Proceedings of the Conference Record of Hot Chips 16. Stanford, CA.

Javasena, N. 2005. Memory hierarchy design for steram computing. Ph.D. thesis, Stanford Uni-
versity.

Kuamany, B., WiLniams, T., Lin, J., Long, E., RyaeH, M., Tovey, D., anD Darry, W. 2008. A pro-
grammable 512 gops stream processor for signal, image, and video processing. IEEE Journal of
Solid-State Circuits 43, 1, 202—213.

Kramer, A. C. anp Levy, H. M. 1994. A comparison of message passing and shared memory
architectures for data parallel programs. In Proceedings of the 21th International Symposium on
Computer Architecture.

KoNGETIRA, P. 2004. A 32-way Multithreaded sparc processor. In Proceedings of the Conference
Record of Hot Chips.

Kranz, D., Jounson, K., AcarRwAL, A., KuBiaTowicz, J., AND Lim, B.-H. 1993. Integrating message-
passing and shared-memory: early experience. In Proceedings of the 4th ACM SIGPLAN sympo-
sium on Principles and Practice of Parallel Programming. 54—63.

KumaR, R., Zyusan, V., aND TuLLsEN, D. M. 2005. Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling. In Proceedings of the 32nd International
Symposium on Computer Architecture.

LEVERICH, dJ., ARAKIDA, H., SoLOMATNIKOV, A., FIRoOzsHAHIAN, A., HorowiTz, M., AND Kozyraxis, C.
2007. Comparing memory systems for chip multiprocessors. In Proceedings of the 34th Annual
International Symposium on Computer Architecture. 358-368.

Lewis, B. anp BErg, D. J. 1998. Multithreaded Programming with Pthreads. Upper saddle River.
NJ: Prentice Hall.

L1, M. et al. 2005. ALP: efficient support for all levels of parallelism for complex Media applica-
tions. Tech. Rep. UIUCDCS-R-2005-2605, UIUC CS. July.

Liv, A. W,, Liao, S.-W,, anp Lam, M. S. 2001. Blocking and array contraction across arbitrarily
nested loops using affine partitioning. ACM SIGPLAN Notices 36, 7, 103-112.

LN, Y. 2004. A programmable Vector coprocessor architecture for wireless applications. In Pro-
ceedings of the 3rd Workshop on Application Specific Processors.

Locni, M. anp Pncivo, M. 2005. Exploring energy/performance tradeoffs in shared memory
MPSoCs: Snoop-based cache coherence vs. software solutions. In Proceedings of the Design Au-
tomation and Test in Europe Conference

Macunickt, E. 2005. Ultra high performance scalable DSP family for multimedia. In Proceedings
of the Conference Record of Hot Chips 17.

Mar, K. et al. 2000. Smart memories: A modular reconfigurable architecture. In Proceedings of
the 27th International Symposium on Computer architecture.

MIPS32 2001. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set.
MIPS Technologies, Inc.

Mosnovos, A. 2005. Regionscout: Exploiting coarse grain sharing in snoop-based coherence. In
Proceedings of the 32nd International Symposium on Computer Architecture.

MPEG Sortware SiMULATION GroUP. Mssg mpeg2 encoder and decoder. Available at: http:/www.
mpeg.org/MPEG/MSSG/.

SankaraniNcam, K. 2004. TRIPS: A polymorphous architecture for exploiting ILP, TLP, and DLP.
ACM Trans. Archit. Code Optim. 1, 1, 62-93.

Sum, J. et al. 2003. A performance analysis of PIM, stream processing, and tiled processing on
memory-intensive signal processing kernels. In Proceedings of the 30th International Symposium
on Computer Architecture.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

12:30 o J. Leverich et al.

TarJAN, D., THOZIYOOR, S., AND Joupp1, N. P. 2006. CACTI 4.0. Tech. Rep. HPL-2006-86, HP Labs.

TavLor, M. et al. 2004. Evaluation of the raw microprocessor: An exposed-wire-delay architec-
ture for ILP and streams. In Proceedings of the 31st International Symposium on Computer
Architecture.

TensiLica 2007. Tensilica Software Tools. http://www.tensilica.com/products/software.htm.

VanDERWIEL, S. P. anD Lirga, D. J. 2000. Data prefetch mechanisms. ACM Computing Sur-
veys 32, 2, 174-199.

Wang, D. et al. 2005. DRAMsim: A memory-system simulator. SIGARCH Computer Architecture
News 33, 4.

Wang, Z. et al. 2002. Using the compiler to improve cache replacement decisions. In Proceedings
of the Conference on Parallel Architectures and Compilation Techniques.

Wang, Z. et al. 2003. Guided region prefetching: a cooperative hardware/software approach. In
Proceedings of the 30th International Symposium on Computer Architecture.

YEeH, T.-Y. 2005. The low-power high-performance architecture of the PWRficient processor fam-
ily. In Proceedings of the Conference Record of Hot Chips 17.

Received March 2007; revised June 2008; accepted July 2008

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 12, Publication date: Nov. 2008.

